Ministère
de l'Environnement
et de la Lutte contre
les changements
climatiques

Québec 22 23

Direction des renseignements, de l'accès à l'information et des plaintes sur la qualité des services

PAR COURRIEL

Québec, le 29 janvier 2020

Objet : Demande d'accès n° 2019-11-096 - Lettre de réponse

Monsieur,

La présente fait suite à votre demande d'accès, reçue le 28 novembre dernier, concernant les résultats d'échantillonnage à la cheminée C2 et C4 de la Fonderie Horne pour les années 2002 à 2015 et le nombre d'heures d'opération de la Fonderie pour la même période.

Nous répondons à votre demande point par point.

Point 1 : Les résultats d'échantillonnage à la cheminée C2 et C4 de la Fonderie Horne pour les années 2002 à 2015;

Les documents suivants sont accessibles. Il s'agit de :

- 1. Résultats C2 et C4 2007, 3 pages;
- 2. Résultats C2 et C4 2008, 3 pages;
- 3. Résultats C2 et C4 2009, 3 pages;
- .4. Résultats C2 et C4 2010, 3 pages;
- 5. Résultats C2 et C4 2011, 3 pages;
- Résultats C2 et C4 2012, 3 pages;
- 7. Résultats C2 et C4 2013, 3 pages;
- 8. Résultats C2 et C4 2014, 4 pages;
- 9. Résultats C2 et C4 2015, 3 pages.

Par contre, nous vous informons que le ministère de l'Environnement et de la Lutte contre les changements climatiques ne détient aucun document concernant les résultats d'échantillonnage pour les années 2002 à 2006.

Point 2 : Le nombre d'heures d'opération de la Fonderie Horne pour les années 2002 à 2015.

Après vérification, nous vous informons que le Ministère ne détient aucun document permettant de répondre à ce point de votre demande.

Édifice Marie-Guyart, 29° étage 675, boul. René-Lévesque Est, boîte 13 Québec (Québec) G1R 5V7 Téléphone : 418 521-3858 Télécopieur : 418 643-0083

Courriel: acces@environnement.gouv.qc.ca Internet: www.environnement.gouv.qc.ca Conformément à l'article 51 de la Loi sur l'accès aux documents des organismes publics et sur la protection des renseignements personnels (RLRQ, chapitre A-2.1), vous pouvez demander la révision de cette décision auprès de la Commission d'accès à l'information. Vous trouverez, en pièce jointe, une note explicative concernant l'exercice de ce recours ainsi qu'une copie de l'article précité de la Loi.

Pour obtenir des renseignements supplémentaires, vous pouvez communiquer avec M. Sergimar Martins De Araujo, analyste responsable de votre dossier, à l'adresse courriel sergimar martinsdearaujo@environnement.gouv.qc.ca, en mentionnant le numéro de votre dossier en objet.

Veuillez agréer, Monsieur, l'expression de nos sentiments les meilleurs.

La directrice,

ORIGINAL SIGNÉ PAR

Julie Samuël

p. j. 10

Cheminée C-2

Vérification de la norme supplémentaire en matières particulaires :

Commentaires :

- 1) Il y a eu 5 échantillonnages au 4e trimestre, la valeur moyenne de ces 5 échantillonnages pour la concentration et pour le débit ont été utilisées aux essai #1, #2 et #3.
- 2) Le taux d'émission moyen annuel a été établi avec le 4e trimestre.

Année : 2007												
				Essai # 1			Essai # 2			Essal # 3	GT 913	Taux
Paramètres (fréquence d'échantillonnage)	Date	TA (t/h) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	d'émission
	1e trimestre				#DIV/0!	Maria de la Companya		#DIV/0!		and so pain	#DIV/0!	#DIV/0!
Matières particulaires	2e trimestre	14.		ea (section	#DIV/0!		at Ala itu All	#DIV/0!	tipa tigagi	Menni	#DIV/0!	#DIV/0!
(1x/3 mois)	3e trimestre				#DIV/0!	- II aliastia		#DIV/0!	iali ABBB		#DIV/0!	#DIV/0!
	4e trimestre	139	11,4	1 314 440	0,10780299	11,4	1 314 440	0,10780299	11,4	1 314 440	0,10780299	0,107802993
								Tau	ıx d'émissio	ın moyen anı	nuel (kg/t) (3)	0,107802993
	The state of the s									Norme a	nnuelle (kg/t)	0,6
Alimentation annuelle (t/an) (4)	201 738									Émission a	nnuelle (t/an)	21,75

- 1. Le taux d'alimentation (TA), exprimé en tonnes à l'heure d'opération, correspond au tonnage moyen trimestriel des matières introduites au procédé. (voir **Matières introduites au procédé** ci-dessous)
- 2. Pour chaque trimestre, le taux d'émission moyen (kg/t) correspond au calcul de la moyenne arithmétique des 3 essais.
- 3. La moyenne annuelle est la moyenne arithmétique des taux d'émission moyens trimestriels.
- 4. L'alimentation annuelle correspond à la somme des matières introduites au procédé durant l'année.

atières introduites au procédé:

Fournir les quantités de matières introduites au procédé (réacteur, convertisseurs, fours à anodes et coulée) annuellement et sur une base mensuelle. Ces matières (concentrés, minerais, produits recyclés, fondants et combustibles) sont calculées selon la méthode présentée à l'annexe 4-A de la partie VII de l'attestation.

Note 1 : La présente déclaration ne porte que sur les mois de novembre et de décembre 2007.

Cheminée C-2

Suivi de l'échantillonnage :

Commentaires :

- 1) Il y a eu 6 échantillonnages au 4e trimestre, la valeur moyenne de ces 6 échantillonnages pour la concentration et pour le débit ont été utilisées aux essai #1, #2 et #3.
- 2) S/O signifie que ces paramètres n'ont pu être échantillonnés en novembre ou en décembre 2007.

Année : 2007											
			Essai # 1			Essai # 2			Essai # 3		Émission
Paramètres (fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
	1e trimestre	Barrel E		0,000			0,000		Report to the second second	0,000	0,000
As	2e trimestre		as in the	0,000	ty.	1 12 1312	0,000			0,000	0,000
(1x/3mois)	3e trimestre			0,000			0,000			0,000	0,000
	4e trimestre	1,3888	1 316 887	1,829	1,3888	1 316 887	1,829	1,3888	1 316 887	1,829	1,829
	1e trimestre		North Control	0,000			0,000			0,000	0,000
Bi	2e trimestre		San San San	0,000			0,000			0,000	0,000
(1x/3mois)	3e trimestre		ar Andreas and Andreas	0,000			0,000			0,000	0,000
	4e trimestre	0,0508	1 316 887	0,067	0,0508	1 316 887	0,067	0,0508	1 316 887	0,067	0,067
	1e trimestre			0,000		gent of the second	0,000			0,000	0,000
Sb	2e trimestre	San		0,000			0,000			0,000	0,000
x/3mois)	3e trimestre		-	0,000			0,000			0,000	0,000
	4e trimestre	0,026	1 316 887	0,034	0,026	1 316 887	0,034	0,026	1 316 887	0,034	0,034
	1e trimestre			0,000	X .	İ	0,000			0,000	0,000
Pb	2e trimestre			0,000	gija sa		0,000	er er er er Er er er er	a a at a	0,000	0,000
(1x/3mois)	3e trimestre			0,000			0,000			0,000	0,000
	4e trimestre	1,9592	1 316 887	2,580	1,9592	1 316 887	2,580	1,9592	1 316 887	2,580	2,580
	1e trimestre			0,000			0,000			0,000	0,000
Cd	2e trimestre		E Transport	0,000	ali ji		0,000	State Line	. Twe	0,000	0,000
(1x/3mois)	3e trimestre		-	0,000			0,000			0,000	0,000
	4e trimestre	0,0033	1 316 887	0,004	0,0033	1 316 887	0,004	0,0033	1 316 887	0,004	0,004
Dioxines et furanes (1x/an)		S/O	S/O	#VALEUR!	S/O	S/O	#VALEUR!	S/O	S/O	#VALEUR!	#VALEUR!
Cl ₂ (1x/an)		S/O	S/O	#VALEUR!	S/O	S/O	#VALEUR!	S/O	S/O	#VALEUR!	#VALEUR!
HCI (1x/an)		S/O	S/O	#VALEUR!	S/O	S/O	#VALEUR!	S/O	S/O	#VALEUR!	#VALEUR!
Hg (1x/an)		S/O	S/O	#VALEUR!	S/O	S/O	#VALEUR!	S/O	S/O	#VALEUR!	#VALEUR!
CO (2x/5 ans)		S/O	S/O	#VALEUR!	S/O	S/O	#VALEUR!	S/O	S/O	#VALEUR!	#VALEUR!
NOx (2x/5 ans)		S/O	S/O	#VALEUR!	S/O	S/O	#VALEUR!	S/O	S/O	#VALEUR!	#VALEUR!

Cheminée C-4

Vérification de la norme réglementaire en brouillard d'acide à la cheminée C4 :

Année: 2007	Date		24-	mai-07			24-n	nai-07			28-	mai-07		
			Es	sai # 1			Ess	ai # 2			Es	sai # 3		Taux
Paramètres (fréquence d'échantillonnage)		TP (t/h) (1)	Cone (mg/Nm³)	Débit (Nm³/n	Taux) d'émission (kg/i) (3)	TP (Vh) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/i) (3)	TP (Vh) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)_(3)	d'émission moyen (kg/t) (2)
H ₂ SO ₄ + SO ₃		93,988	5,83	264572	0,01641119	88,304	7,71	261723	0,0214696	95,724	12,22	264006	0,03432516	0,02406865
(1x/an)													Norme (kg/t)	0,075

			ESS				ESS	sai # 3		Iaux	
	Taux		Conc		Taux		ALC:			d'émission	
(Nm³/h)	d'émission	TP (t/h) (1)	(mg/Nm³)	Débit (Nm³/h)	d'émission	TP (vn) (1)	(mg/Nm³)	Débit (Nm³/h)	d'émission	moyen (kg/t)	
	(kg/t) (3)		(mg/m)		(kg/t) (3)	(0)	(myriin)		(kg/t).(3)	(2)	
572	0,01641119	88,304	7,71	261723	0,0214696	95,724	12,22	264006	0,03432516	0,02406865	
									Norme (kg/t)	0,075	

- 1. Le taux de production (TP) est le taux de production d'acide à 100% correspondant à la durée de chaque essai. Joindre les données qui ont permis de calculer le taux de production d'acide à 100%.
- 2. Le taux d'émission maximal est le taux d'émission maximal obtenu dans les 3 essais.
- 3. Aucune valeur ne doit excéder 120% de la norme soit 0,09 kg/t

Vérification de la norme réglementaire sur l'efficacité de l'usine d'acide :

Année: 200	7 D	ate		24-mai-07		and the same of the	24-mai-07			28-mai-07	4.5 g 400 kg	
Paramètres				Essai # 1			Essai # 2			Essai # 3		Émission
(fréquence d'échantillonna	ige)		Conc (ma/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
SO ₂ (1x/an)			5875,31	264572	1554,44252	6042,48	261723	1581,45599		264006	1216,14628	1450,6816

En utilisant de la méthode de calcul précisée à l'annexe 4-B de la Partie VII de l'attestation, calculer l'efficacité de l'usine d'acide. Joindre les calculs.

Quantité de SO₂ émis :	3,63
Quantité de SO ₂ dans l'acide :	151,30
Efficacité de l'usine (%) :	97,66%

	inem.	· NIAH	innai	14.	Section C	6%
San State of the		3 U CH	IUau	10.1	and the same of	TQ /0

Suivi des émissions à la cheminée C4 :

Année : 2007											
Paramètres			Essai # 1			Essai # 2			Essai # 3		Émission
(fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
Dioxines et furanes (1x/an)	Note 1	3,4E-08	269782	9,1726E-09	2,1E-08	277942	5,8368E-09	4E-09	281775	1,1271E-09	5,3788E-09
Cl ₂ (1x/an)	Note 2			0			0			0	0
HCI (1x/an)	Note 2			0			0			0	0
Hg (1x/an)	Note 3	0,007	261828	0,0018328	0,012	266568	0,00319882	0,012	258348	0,00310018	0,0027106

- Note 1 : La présente déclaration ne porte que sur les mois de novembre et de décembre 2007.
- Note 2: Pour les dioxines et furanes, les dates d'échantillonnage sont dans l'ordre : 29 mai, 12 juin (en pm) et 12 juin (en pm) 2007.

Les valeurs sont exprimées en TEQ.

Note 3: Pour le Cl2 et le HCl, aucun échantillonnage n'a pu être effectué en novembre ou en décembre 2007.

Note 4: Pour le Hg, les dates d'échantillonnage sont dans l'ordre : 03 mai, 22 mai (en am) et 22 mai (en pm) 2007.

Calcul	s pour H2SO4	1 + SO3	
	Essai 1	Essai 2	Essai 3
Durée du test en heure	2,5	2,5	2,5
Tonnes métriques d'acide à 100%	234,97	220,76	239,31
TP en t/h	93,988	88,304	95,724

		Tonnes de SO2 émis	Tonnes de SO2 dans l'acide
Calcuis de la norme d'efficacité	Essai 1 Essai 2 Essai 3 Moyenne	3,89 3,95 3,04 3,63	153,45 144,17 156,28 151,30
	Efficacité %	97,66	

Cheminée C-2

Vérification de la norme supplémentaire en matières particulaires :

	100000		0.50	Essai # 1			Essai # 2			Essai # 3		7 12 4 1 5 2 7 7	Essai # 4			Essai # 5			Essai # 6		Taux
Paramètres fréquence d'échantillonnage)	Date	(Vh) (1)	Conc (mg/Nm³)	Débit (Nm³/h	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l)	d'émission
	(5)	133	14,0	1 285 999	0,135368316	15,1	1 172 033	0,133065401	15,2	1 146 846	0,1310681	12,7	1 232 614	0,1177007	16,9	1 192 877	0,1515761	12,7	1 189 497	0,1135835	0,130
Matières particulaires	(6)	137	27,9	1 167 235	0,237706982	11,1	1 208 300	0,097898759	8,5	1 196 512	0,0742361	18,0	1 245 643	0,1636611	16,3	1 255 893	0,1494238	17,9	1 227 111	0,1603306	0,147
1x/3 mois)	(7)	135	16,8	1 136 971	0,141489724	26,0	1 122 364	0,216158993	26,6	1 100 397	0,216819	15,4	1 096 108	0,1250375	32,4	1 117 643	0,2682343	27,7	1 252 229	0,2569388	0,204
	(8)	106	47,6	1 252 229	0,562321702	48,7	1 157 057	0,531591282	15,4	1 267 284	0,1841148	15,7	1 230 954	0,1823205	20,0	1 217 071	0,229636	16,9	1 258 577	0,2006599	0,315
																	Tau	x d'émissio	n moyen anr	nuel (kg/t) (3)	0,199
												de la companya de la							Norme ar	nnuelle (kg/t)	0,6

- 1. Le taux d'alimentation (TA), exprimé en tonnes à l'heure d'opération, correspond au tonnage moyen trimestriel des matières introduites au procédé. (voir Matières introduites au procédé ci-dessous)
- 2. Pour chaque trimestre, le taux d'émission moyen (kg/t) correspond au calcul de la moyenne arithmétique des 3 essais.
- 3. La moyenne annuelle est la moyenne arithmétique des taux d'émission moyens trimestriels.
- 4. L'alimentation annuelle correspond à la somme des matières introduites au procédé durant l'année.
- 5. Le 1er essai a été effectué le 04 mars, les 2e et 3e essais ont été effectués le 06 mars, les 4e et 5e essais ont été effectués le 11 mars et le 6e essai a été effectué le 18 mars.
- 6. Le 1er essai a été effectué le 21 mai, les 2e et 3e essais ont été effectués le 22 mai, le 4e essai a été effectué le 27 mai et les 5e et 6e essais ont été effectués le 29 mai.
- 7. Les 1er et 2e essais ont été effectués le 25 juin, les 3e et 4e essais ont été effectués le 03 septembre et les 5e et 6e essais ont été effectués le 04 septembre.
- 8. Les 1er et 2e essais ont été effectués le 01 octobre, les 3e et 4e essais ont été effectués le 28 octobre et les 5e et 6e essais ont été effectués le 30 octobre.

Matières introduites au procédé :

Cheminée C-2

HCI (1x/an)

Hg (1x/an)

CO (2x/5 ans)

NOx (2x/5 ans)

Suivi de l'échantillonnage :

Année 2008																				
Paramètres			Essai # 1			Essai # 2			Essai # 3			Essai # 4			Essai # 5			Essai # 6		Émission
rarametres (fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
	Note 1	1,294	1 285 999	1,664	0,732	1 172 033	0,858	0,469	1 146 846	0,538	1,583	1 232 614	1,951	2,865	1 192 877	3,418	3,109	1 189 497	3,698	2,021
As		2,983	1 167 235	3,482	1,426	1 208 300	1,723	1,635	1 196 512	1,956	1,622	1 245 643	2,020	1,73	1 255 893	2,173	1,234	1 227 111	1,514	2,145
(1x/3mois)		1,715	1 136 971	1,950	1,697	1 122 364	1,905	2,802	1 100 397	3,083	1,877	1 096 108	2,057	2,798	1 117 643	3,127	2,272	1 252 229	2,845	2,495
		2,604	1 252 229	3,261	2,161	1 157 057	2,500	0,725	1 267 284	0,919	0,895	1 230 954	1,102	0,817	1 217 071	0,994	0,737	1 258 577	0,928	1,617
	Note 2	0,038	1 285 999	0,049	0,013	1 172 033	0,015	0,012	1 146 846	0,014	0,088	1 232 614	0,108	0,133	1 192 877	0,159	0,063	1 189 497	0,075	0,070
Bi		0,157	1 167 235	0,183	0,065	1 208 300	0,079	0,062	1 196 512	0,074	0,101	1 245 643	0,126	0,169	1 255 893	0,212	0,15	1 227 111	0,184	0,143
(1x/3mois)		0,096	1 136 971	0,109	0,104	1 122 364	0,117	0,173	1 100 397	0,190	0,062	1 096 108	0,068	0,159	1 117 643	0,178	0,136	1 252 229	0,170	0,139
美		0,117	1 252 229	0,147	0,099	1 157 057	0,115	0,016	1 267 284	0,020	0,016	1 230 954	0,020	0,135	1 217 071	0,164	0,064	1 258 577	0,081	0,091
2.000	Note 3	0,016	1 285 999	0,021	0,01	1 172 033	0,012	0,006	1 146 846	0,007	0,034	1 232 614	0,042	0,04	1 192 877	0,048	0,037	1 189 497	0,044	0,029
Sb		0,065	1 167 235	0,076	0,039	1 208 300	0,047	0,034	1 196 512	0,041	0,047	1 245 643	0,059	0,062	1 255 893	0,078	0,05	1 227 111	0,061	0,060
(1x/3mois)		0,046	1 136 971	0,052	0,051	1 122 364	0,057	0,059	1 100 397	0,065	0,034	1 096 108	0,037	0,069	1 117 643	0,077	0,068	1 252 229	0,085	0,062
		0,05	1 252 229	0,063	0,042	1 157 057	0,049	0,016	1 267 284	0,020	0,022	1 230 954	0,027	0,012	1 217 071	0,015	0,019	1 258 577	0,024	0,033
	Note 4	0,898	1 285 999	1,155	0,701	1 172 033	0,822	0,688	1 146 846	0,789	3,769	1 232 614	4,646	4,013	1 192 877	4,787	2,563	1 189 497	3,049	2,541
Pb		3,168	1 167 235	3,698	2,769	1 208 300	3,346	2,43	1 196 512	2,908	4,527	1 245 643	5,639	4,619	1 255 893	5,801	7,13	1 227 111	8,749	5,023
(1x/3mois)		2,437	1 136 971	2,771	2,583	1 122 364	2,899	4,854	1 100 397	5,341	2,436	1 096 108	2,670	6,953	1 117 643	7,771	6,828	1 252 229	8,550	5,000
		10,128	1 252 229	12,683	7,696	1 157 057	8,905	1,155	1 267 284	1,464	1,423	1 230 954	1,752	1,14	1 217 071	1,387	1,945	1 258 577	2,448	4,773
4	Note 5	0,003	1 285 999	0,004	0,001	1 172 033	0,001	0,001	1 146 846	0,001	0,002	1 232 614	0,002	0,002	1 192 877	0,002	0,004	1 189 497	0,005	0,003
Cd		0,02	1 167 235	0,023	0,005	1 208 300	0,006	0,004	1 196 512	0,005	0,01	1 245 643	0,012	0,006	1 255 893	0,008	0,003	1 227 111	0,004	0,010
(1x/3mois)		0,001	1 136 971	0,001	0,004	1 122 364	0,004	0,026	1 100 397	0,029	0,02	1 096 108	0,022	0,057	1 117 643	0,064	0,033	1 252 229	0,041	0,027
		0,022	1 252 229	0,028	0,021	1 157 057	0,024	0,003	1 267 284	0,004	0,003	1 230 954	0,004	0,02	1 217 071	0,024	0,007	1 258 577	0,009	0,015
			Essai # 1			Essai # 2			Essai # 3		Émission									
Paramètres (fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)	- 1 1								
Dioxines et furanes (1x/an)	Note 6	0,000000011	1 176 023	0,000000013	0,000000009	1 250 922	0,000000011	0,000000007	1 191 827	0,000000008	0,000000011	⊺ ∥								
Cl ₂ (1x/an)	Note 7	1,237	1 197 094	1,481	0,311	1 165 335	0,362	0,633	1 211 110	0,767	0,870									
	1)	()				7		-				ના								

1 211 110

1 169 696

0,292

0,002

0,000

0,000

0,001

0,000

0,000

Note 1 : Voir les notes 5 à 8 du tableau sur les matières particulaires.

0,000876

Note 2 : Voir les notes 5 à 8 du tableau sur les matières particulaires.

Note 3 : Voir les notes 5 à 8 du tableau sur les matières particulaires.

Note 4 : Voir les notes 5 à 8 du tableau sur les matières particulaires.

Note 5 : Voir les notes 5 à 8 du tableau sur les matières particulaires.

Note 6 : Les 2 premiers essais ont été effectués le 25 septembre et le troisième essai a été effectué le 29 septembre 2008.

Note 7: Les 2 premiers essais ont été effectués le 30 octobre et le troisième essai a été effectué le 17 décembre 2008.

Note 8 : Les 2 premiers essais ont été effectués le 30 octobre et le troisième essai a été effectué le 17 décembre 2008.

Note 9 : Le premier essai a été effectué le 18 mars et les 2 autres essais ont été effectués le 25 mars 2008.

1 197 094

1 234 338

0,342

0,001

0,000

0,000

0,000889

1 165 335

1 149 961

0,326

0,001

0,000

0,000

0,001495

Note 10 : Ce paramètre n'a pas été échantillonné en 2008.

Note 9

Note 10

Note 11

Note 11 : Ce paramètre n'a pas été échantillonné en 2008.

Cheminée C-4

Vérification de la norme réglementaire en brouillard d'acide à la cheminée C4 :

Année : 2008			- Ess	sai#1			Ess	ai # 2			Es	sai # 3		
Paramètres	Date		16-jui	llet-2008			16-juil	let-2008			18-ju	illet-2008		Taux
(fréquence d'échantillonnage)		TP (t/h) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t) (3)	TP (vh) (1)	Conc (mg/Nm³)	Débit (Nm³/n)	Taux d'émission (kg/t) (3)	TP (t/h) (1)	Conc (mg/Nm³)	Débit (Nm³/n)	Taux d'émission (kg/t) (3)	d'émission
H ₂ SO ₄ + SO ₃		88,956	3,33	265 629	0,010	56,617	5,95	237 567	0,016	91,953	6,57	220 348	0,016	0,016
(1x/an)													Norme (kg/t	0,075

1.	Le taux de production (TP) est le taux de production d'acide à 100% correspondant à la durée de chaque essai.
	Joindre les données qui ont permis de calculer le taux de production d'acide à 100%.

- 2. Le taux d'émission maximal est le taux d'émission maximal obtenu dans les 3 essais.
- 3. Aucune valeur ne doit excéder 120% de la norme soit 0,09 kg/t

<u>Vation de la norme réglementaire sur l'efficacité de l'usine d'acide : </u>

Année: 2008			Essai #1			Essai # 2		200 Sept. 1992	Essai # 3		
Paramėtres	Date		16-juillet-200	8		16-juillet-2008	3		18-juillet-2008	3	Émission
(fréquence d'échantillonnage)		Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
SO ₂ (1x/an)		4985,84	265 629	1324,384	5021,4	237 567	1192,919	5113,92	220 348	1126,842	1214,715

En utilisant de la méthode de calcul précisée à l'annexe 4-B de la Partie VII de l'attestation, calculer l'efficacité de l'usine d'acide. Joindre les calculs.

Quantité de SO₂ émis :	3,42
Quantité de SO₂ dans l'acide :	145,44
Efficacité de l'usine (%) :	97,70%

Norme d'efficacité: 96%

Suivi des émissions à la cheminée C4 :

Année: 2008														
Paramètres			Essai #1			Essai # 2			Essai #3		Émission			
(fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)			
Dioxines et furanes (1x/an)	Note 1	0,000000020	237 843	0,000000005	0,000000022	233 638	0,000000005	0,000000017	234 634	0,000000004	0,000000005			
Cl₂ (1x/an)	Note 2	0,685	257 055	0,176	0,538	259 651	0,140	1,012	251 940	0,255	0,190			
ÇI (1x/an)	Note 3	0,891	257 055	0,229	1,446	259 651	0,375	1,291	251 940	0,325	0,310			
្នំ (1x/an)	Note 4	0,011	227 055	0,003	0,005	261 287	0,001	0,002	225 744	0,0004	0,001			

Note 1: Le premier essai a été effectué le 22 juillet, le deuxième a été effectué le 24 juillet et le troisième a été effectué le 25 juillet 2008.

Note 2 : Le premier essai a été effectué le 03 décembre et les 2 autres essais ont été effectués le 04 décembre 2008.

Note 3: Le premier essai a été effectué le 03 décembre et les 2 autres essais ont été effectués le 04 décembre 2008.

Note 4: Le premier essai a été effectué le 12 juin, le deuxième a été effectué le 17 juin et le troisième a été effectué le 07 juillet 2008.

Calcul	s pour H2SO	4 + SO3	
	Essai 1	Essai 2	Essai 3
Durée du test en heure	2,5	3,0	3,0
Tonnes métriques d'acide à 100%	222,39	169,85	275,86
TP en t/h	88,956	56,617	91,953

		Tonnes de SO2 émis	Tonnes de SO2 dans l'acide
Calculs de la norme d'efficacité	Essai 1 Essai 2 Essai 3 Moyenne	3,31 3,58 3,38 3,42	145,24 110,92 180,15 145,44

Cheminée C-2

Vérification de la norme supplémentaire en matières particulaires :

				Essai #1			Essai # 2			Essal#3			Essai#4			Essai # 5			Essai#6		Taux
Paramètres (fréquence d'échantillonnage)	Date	(t/h) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l)	d'émission moyen (kg/l) (2)															
	(6)	109	AN (5)	1 015 329	#VALEUR!	16,8	991 521	0,152821585	AN	1 058 726	#VALEUR!	7,4	1 112 908	0,0755552	23,5	1 135 993	0,2449159	AN	1 066 413	#VALEUR!	0,158
Matières particulaires		121	AN	1 192 882	#VALEUR!	23,4	1 142 169	0,220882269	22,2	1 243 233	0,2280973	14,0	1 168 849	0,1352387	30,2	1 161 181	0,2898154	6,2	1 116 022	0,0571846	
(1x/3 mois)		144	15,6	1 003 385	0.108700042	10,4	1 231 876	0,088968822	11,2	1 285 205	0,0999604	AN	1 208 926	#VALEUR!	9,5	1 074 533	0,0708893	AN	1 230 984	#VALEUR!	0,092
		141	7,3	1 197 853	0,062016503	8,1	1 158 219	0,066535985	10,0	1 193 218	0,0846254	9,5	1 139 940	0,0768045	12,0	1 200 624	0,1021808	8,7	1 193 918	0,0736673	0,078
																	Tai	ux d'émissi	on moyen an	nuel (kg/l) (3)	0,128
																			Norme a	nnuelle (kg/t)	0,6
Alimentation annuelle (t/an) (4)	1 030 700																		Émission a	nnuelle (t/an)	132,387

- Le taux d'alimentation (TA), exprimé en tonnes à l'heure d'opération, correspond au tonnage moyen trimestriel des matières introduites au procédé. (voir Matières introduites au procédé ci-dessous)
- 2. Pour chaque trimestre, le taux d'émission moyen (kg/t) correspond au calcul de la moyenne arithmétique des 3 essais.
- 3. La moyenne annuelle est la moyenne arithmétique des taux d'émission moyens trimestriels.
- 4. L'alimentation annuelle correspond à la somme des matières introduites au procédé durant l'année.
- 5. Certains tests ont dû être annulés pour la détermination des matières particulaires suite à l'utilisation de filtres défectueux (trop friables).
- 6. Un tableau, au bas de la feuille, présente les dates d'échantillonnage pour les différents paramètres.

Matières introduites au procédé :

Cheminée C-2

Suivi de l'échantillonnage :

Année : 2009		31			1			II .			u .	0.00								4
Paramètres			Essal#1			Essal # 2			Essal # 3			Essal # 4			Essal # 5			Essal # 6		47
(fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	
	(6)	5,289	1 015 329	5,370	0,923	991 521	0,915	0,614	1 058 726	0,650	1,185	1 112 908	1,319	2,883	1 135 993	3,275	1,217	1 066 413	1,298	F
As		2,225	1 192 882	2,654	2,71	1 142 169	3,095	2,002	1 243 233	2,489	2,009	1 168 849	2,348	3,397	1 161 181	3,945	0,625	1 116 022	0,698	r
(1x/3mois)		1,274	1 003 385	1,278	0,94	1 231 876	1,158	0,923	1 285 205	1,186	0,667	1 208 926	0,806	0,908	1 074 533	0,976	0,639	1 230 984	0,787	┢
	SERVICE CONTRACTOR	0,668	1 197 853	0,800	0,267	1 158 219	0,309	0,547	1 193 218	0,653	1,763	1 139 940	2,010	1,28	1 200 624	1,537	1,138	1 193 918	1,359	┢
		0,186	1 015 329	0,189	0,044	991 521	0,044	0,018	1 058 726	0,019	0,045	1 112 908	0,050	0,297	1 135 993	0,337	0,133	1 066 413	0,142	Г
BI		0,072	1 192 882	0,086	0,148	1 142 169	0,169	0,189	1 243 233	0,235	0,178	1 168 849	0,208	0,152	1 161 181	0,176	0,031	1 116 022	0,035	广
(1x/3mois)		0,08	1 003 385	0,080	0,061	1 231 876	0,075	0,149	1 285 205	0,191	0,082	1 208 926	0,099	0,069	1 074 533	0,074	0,131	1 230 984	0,161	厂
		0,063	1 197 853	0,075	0,054	1 158 219	0,063	0,023	1 193 218	0,027	0,068	1 139 940	0,078	0,08	1 200 624	0,096	0,078	1 193 918	0,093	┢
		0,101	1 015 329	0,103	0,01	991 521	0,010	0,004	1 058 726	0,004	0,033	1 112 908	0,037	0,101	1 135 993	0,115	0,029	1 066 413	0,031	
Sb	SSA SARAMANA	0,02	1 192 882	0,024	0,07	1 142 169	0,080	0,051	1 243 233	0,063	0,046	1 168 849	0,054	0,054	1 161 181	0,063	0,02	1 116 022	0,022	一
(1x/3mois)		0,069	1 003 385	0,069	0,025	1 231 876	0,031	0,03	1 285 205	0,039	0,023	1 208 926	0,028	0,029	1 074 533	0,031	0,056	1 230 984	0,069	г
		0,026	1 197 853	0,031	0,016	1 158 219	0,019	0,008	1 193 218	0,010	0,023	1 139 940	0,026	0,026	1 200 624	0,031	0,026	1 193 918	0,031	
		2,649	1 015 329	2,690	1,126	991 521	1,116	0,497	1 058 726	0,526	1,981	1 112 908	2,205	7,875	1 135 993	8,946	2,257	1 066 413	2,407	Г
Pb		1,991	1 192 882	2,375	3,471	1 142 169	3,964	2,33	1 243 233	2,897	3,586	1 168 849	4,191	2,101	1 161 181	2,440	2,233	1 116 022	2,492	┢
(1x/3mois)		3,762	1 003 385	3,775	1,719	1 231 876	2,118	2,669	1 285 205	3,430	2,61	1 208 926	3,155	3,467	1 074 533	3,725	2,857	1 230 984	3,517	┢
		2,184	1 197 853	2,616	2,779	1 158 219	3,219	1,624	1 193 218	1,938	2,205	1 139 940	2,514	2,562	1 200 624	3,076	2,434	1 193 918	2,906	
		0,01	1 015 329	0,010	0,014	991 521	0,014	0,001	1 058 726	0,001	0,01	1 112 908	0,011	0,017	1 135 993	0,019	0,007	1 066 413	0,007	
Cd		0,006	1 192 882	0,007	0,01	1 142 169	0,011	0,007	1 243 233	0,009	0,006	1 168 849	0,007	0,008	1 161 181	0,009	0,002	1 116 022	0,002	┢
(1x/3mois)		0,003	1 003 385	0,003	0,003	1 231 876	0,004	0,006	1 285 205	0,008	0,003	1 208 926	0,004	0,005	1 074 533	0,005	0,001	1 230 984	0,001	┢
		0,006	1 197 853	0,007	0,002	1 158 219	0,002	0,002	1 193 218	0,002	0,004	1 139 940	0,005	0,003	1 200 624	0,004	0,002	1 193 918	0,002	г
Paramètres			Essal #1			Essai # 2			Essal#3		Émission		J.			<u> </u>				_
(fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)									
Dioxines et furanes (1x/an)	(6)	0,000000008	1 164 457	0,0000000009	0,000000009	1 132 171	0,000000011	0,000000004	1 182 773	0,000000005	0,000000008	1								
Cl ₂ (1x/an)		0,07781	1 194 409	0,093	0,10359	1 116 627	0,116	0,20646	1 129 157	0,233	0,147	1								
HCI (1x/an)		0,17043	1 194 409	0,204	0,24787	1 116 627	0,277	0,21772	1 129 157	0,246	0,242	1								
						det posterit estimates a la		Section in a restriction of the Mills	 Light Control of the American States 			J1								

0,0002

5,914

23,746

5,3905

20,5988

1 187 213

1 512 167

1 512 167

0,0012

21,530

0,0012

8,042

30,731

1 162 523

1 491 881

1 491 881

Émission moyenne (kg/h) 2,138 2,538 1,032 1,111 0,130 0,152 0,114 0,072 0,050 0,051 0,044 0,025 2,982 3,060 3,287 2,711 0,010 0,008 0,004 0,004

Calendrier d'échantillonnage :

Hg (1x/an)

CO (2x/5 ans)

NOx (2x/5 ans)

Année : 2009			D	ate		
Paramètres (fréquence d'échantillonnage)	Essal #1	Essai # 2	Essai # 3	Essal#4	Essal # 5	Essai # 6
4 E/ 6/ E/ 6/ /	16-mars	17-mars	18-mars	25-mars	25-mars	26-mars
As, Bi, Sb, Pb, Cd et Matières	20-mai	20-mai	21-mai	21-mai	25-mai	26-mai
particulaires	11-août	12-août	12-août	13-août	13-août	24-août
	27-octobre	27-octobre	27-octobre	29-octobre	29-octobre	29-octobre
Dioxines et furanes (1x/an)	21-octobre	21-octobre	23-octobre			
Cl ₂ (1x/an)	14-octobre	14-octobre	19-octobre			
HCI (1x/an)	14-octobre	14-octobre	19-octobre			
Hg (1x/an)	25-août	26-août	26-août			
CO (2x/5 ans)	05-nov	05-поч	05-nov			
NOx (2x/5 ans)	05-nov	05-nov	05-nov			

2,6801

6,7189

1 139 387

1 505 163

1 505 163

0,0023

4,034

10,113

3,9109

15,7033

Cheminée C-4

Vérification de la norme réglementaire en brouillard d'acide à la cheminée C4 :

Année : 2009			Es	sai#1			Essa	i # 2			Es	sal # 3		
	Date		31-m	ars-2009			06-avri	1-2009			07-a	vril-2009		Taux
aramètres réquence d'échantillonnage)		TP (t/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/i) (3)	TP (t/h) (1)	Conc (mg/Nm³)	Débit (Nm³/'n)	Taux d'émission (kg/t) (3)	TP (t/h) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t) (3)	d'émission
H ₂ SO ₄ + SO ₃		77,283	7,26	244 747	0,023	80,23	6,67	231 537	0,020	74,468	7,23	258 155	0,024	0,024
1x/an)										0.00			Norme (kg/t	0,075

- Le taux de production (TP) est le taux de production d'acide à 100% correspondant à la durée de chaque essai.
 Joindre les données qui ont permis de calculer le taux de production d'acide à 100%.
- 2. Le taux d'émission maximal est le taux d'émission maximal obtenu dans les 3 essais.
- 3. Aucune valeur ne doit excéder 120% de la norme soit 0,09 kg/t

verification de la norme réglementaire sur l'efficacité de l'usine d'acide :

Année : 2009			Essai # 1	1 To 1		Essai # 2	1		Essai # 3		
Paramètres	Date		31-mars-200	9		06-avril-2009			07-avril-2009		Émission
(fréquence d'échantillonnage)		Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
SO₂ (1x/an)		1986,39	244 747	486,163	3745,16	231 537	867,143	3982,43	258 155	1028,084	793,797

En utilisant de la méthode de calcul précisée à l'annexe 4-B de la Partie VII de l'attestation, calculer l'efficacité de l'usine d'acide. Joindre les calculs.

Quantité de SO ₂ émis :	2,21
Quantité de SO ₂ dans l'acide :	143,39
Efficacité de l'usine (%) :	98,48%

Norme d'efficacité: 96%

Suivi des émissions à la cheminée C4 :

Année: 2009		7 - 7 - 7					-				
Paramètres			Essai # 1		1	Essai # 2			Essai # 3		Émission
(fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
Dioxines et furanes (1x/an)	Note 1	0,000000001	241 860	0,0000000002	0,0000000002	219 377	0,00000000004	0,000000001	229 001	0,0000000001	0,0000000001
ີ່ ⊊l₂ (1x/an)	Note 2	3,35318	231 492	0,776	4,78076	237 147	1,134	4,40188	241 492	1,063	0,991
HCI (1x/an)	Note 3	0,4074	231 492	0,094	0,39586	237 147	0,094	0,40323	241 492	0,097	0,095
Hg (1x/an)	Note 4	0,009	235 404	0,002	0,023	221 331	0,005	0,020	226 133	0,0045	0,004

Note 1 : Le premier essai a été effectué le 04 mai, le deuxième le 05 mai et le troisième le 06 mai 2009.

Note 2 : Le premier essai a été effectué le 12 mai, le deuxième le 13 mai et le troisième le 19 mai 2009.

Note 3 : Le premier essai a été effectué le 12 mai, le deuxième le 13 mai et le troisième le 19 mai 2009.

Note 4 : Le premier essai a été effectué le 16 avril, le deuxième et le troisième ont été effectué le 20 avril 2009.

Calcu	ls pour H2SO	4 + SO3	ST. Ripovanatálit m
	Essai 1	Essai 2	Essai 3
Durée du test en heure Tonnes métriques d'acide à 100%	3,0 231,85	3,0 240,69	2,5 186,17
TP en t/h	77,283	80,230	74,468

		Tonnes de SO2 émis	Tonnes de SO2 dans l'acide
Calculs de la norme d'efficacité	Essai 1 Essai 2 Essai 3 Moyenne	1,46 2,60 2,57 2,21	151,41 157,19 121,58 143,39
	Efficacité %	98,48	

Cheminée C-2

Vérification de la norme supplémentaire en matières particulaires :

				Essai # 1	11		Essai # 2			Essai # 3			Essai # 4			Essai # 5			Essai # 6		Taux
Paramètres (fréquence d'échantillonnage)	Date	TA (Vh) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l)	d'émission moyen (kg/t) (2)
	(5)	133	12,5	1 160 667	0,109085244	33,0	1 148 299	0,284916293	18,5	1 209 709	0,16826779	10,3	1 162 812	0,0900524	20,3	1 154 773	0,1762548	20,0	1 219 950	0,1834511	0,169
Matières particulaires		141	37,7	1 128 525	0,301740372	20,7	1 102 760	0,161894553	9,8	1 112 539	0,07732541	√5,4	1 131 793	0,0433453	20,4	1 140 244	0,1649715	33,5	1 183 671	0,2812268	0,172
(1x/3 mois)		132	23,3	1 215 295	0,214517981	34,3	1 096 107	0,284821743	20,9	1 058 944	0,16766613	32,7	1 209 682	0,2996712	30,4	1 134 930	0,2613778	18,3	1 093 888	0,1516527	0,230
		137	11,1	1 101 752	0,089266038	9,3	1 167 337	0,079242585	34,2	1 246 267	0,31111191	21,9	1 100 900	0,1759833	14,3	1 082 649	0,1130064	25,1	1 144 095	0,2096116	0,163
																	Tau	x d'émissio	on moyen ann	nuel (kg/t) (3)	0,183
																		1	Norme ar	nnuelle (kg/t)	0,6
Alimentation annuelle (t/an) (4)	1 135 130								1.						0.00				Émission ar	nnuelle (t/an)	208,129

- Le taux d'alimentation (TA), exprimé en tonnes à l'heure d'opération, correspond au tonnage moyen trimestriel des matières introduites au procédé. (voir Matières introduites au procédé ci-dessous)
- 2. Pour chaque trimestre, le taux d'émission moyen (kg/t) correspond au calcul de la moyenne arithmétique des 6 essais.
- 3. La moyenne annuelle est la moyenne arithmétique des taux d'émission moyens trimestriels.
- 4. L'alimentation annuelle correspond à la somme des matières introduites au procédé durant l'année.
- 5. Un tableau, au bas de la feuille, présente les dates d'échantillonnage pour les différents paramètres.

Matières introduites au procédé :

Fournir les quantités de matières introduites au procédé (réacteur, convertisseurs, fours à anodes et coulée) annuellement et sur une base mensuelle.

Ces matières (concentrés, minerais, produits recyclés, fondants et combustibles) sont calculées selon la méthode présentée à l'annexe 4-A de la partie VII de l'attestation.

Cheminée C-2

Suivi de l'échantillonnage :

Année : 2010																				
Paramètres			Essai # 1			Essai # 2			Essai # 3			Essai # 4			Essai # 5			Essai # 6		Émission
(fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
10	(5)	1,053	1 160 667	1,222	1,447	1 148 299	1,662	0,424	1 209 709	0,513	1,077	1 162 812	1,252	1,882	1 154 773	2,173	4,068	1 219 950	4,963	1,964
As		0,698	1 128 525	0,788	0,371	1 102 760	0,409	0,734	1 112 539	0,817	0,576	1 131 793	0,652	0,609	1 140 244	0,694	1,541	1 183 671	1,824	0,864
1x/3mois)	55555555555	3,318	1 215 295	4,032	1,075	1 096 107	1,178	1,983	1 058 944	2,100	3,593	1 209 682	4,346	0,949	1 134 930	1,077	1,04	1 093 888	1,138	2,312
	SSRATHS (VESSEL)	1,225	1 101 752	1,350	0,778	1 167 337	0,908	1,837 -	1 246 267	2,289	0,508	1 100 900	0,559	0,518	1 082 649	0,561	0,378	1 144 095	0,432	1,017
		0,097	1 160 667	0,113	0,216	1 148 299	0,248	0,109	1 209 709	0,132	0,101	1 162 812	0,117	0,205	1 154 773	0,237	0,425	1 219 950	0,518	0,228
Bi		0,181	1 128 525	0,204	0,056	1 102 760	0,062	0,079	1 112 539	0,088	0,077	1 131 793	0,087	0,083	1 140 244	0,095	0,236	1 183 671	0,279	0,136
(1x/3mois)		0,243	1 215 295	0,295	0,068	1 096 107	0,075	0,119	1 058 944	0,126	0,158	1 209 682	0,191	0,077	1 134 930	0,087	0,139	1 093 888	0,152	0,154
	Sacrata Sacrata	0,065	1 101 752	0,072	0,027	1 167 337	0,032	0,19	1 246 267	0,237	0,11	1 100 900	0,121	0,074	1 082 649	0,080	0,141	1 144 095	0,161	0,117
		0,016	1 160 667	0,019	0,042	1 148 299	0,048	0,012	1 209 709	0,015	0,037	1 162 812	0,043	0,025	1 154 773	0,029	0,052	1 219 950	0,063	0,036
Sb		0,045	1 128 525	0,051	0,018	1 102 760	0,020	0,029	1 112 539	0,032	0,026	1 131 793	0,029	0,046	1 140 244	0,052	0,127	1 183 671	0,150	0,056
(1x/3mois)	(RESERVE AV	0,043	1 215 295	0,052	0,018	1 096 107	0,020	0,027	1 058 944	0,029	0,057	1 209 682	0,069	0,011	1 134 930	0,012	0,022	1 093 888	0,024	0,034
	saladama nas	0,035	1 101 752	0,039	0,025	1 167 337	0,029	0,069	1 246 267	0,086	0,028	1 100 900	0,031	0,021	1 082 649	0,023	0,019	1 144 095	0,022	0,038
	Teneral Victor	1,752	1 160 667	2,033	3,587	1 148 299	4,119	1,358	1 209 709	1,643	2,737	1 162 812	3,183	2,555	1 154 773	2,950	3,663	1 219 950	4,469	3,066
Pb	Nasara Pagasan	16,677	1 128 525	18,820	9,002	1 102 760	9,927	2,805	1 112 539	3,121	2,268	1 131 793	2,567	5,91	1 140 244	6,739	7,185	1 183 671	8,505	8,280
(1x/3mois)		4,203	1 215 295	5,108	7,966	1 096 107	8,732	4,5	1 058 944	4,765	5,071	1 209 682	6,134	8,07	1 134 930	9,159	4,472	1 093 888	4,892	6,465
	(0.000 pt 10.000	2,494	1 101 752	2,748	1,38	1 167 337	1,611	3,291	1 246 267	4,101	2,004	1 100 900	2,206	1,39	1 082 649	1,505	4,059	1 144 095	4,644	2,803
	Palata apternatura	0,007	1 160 667	0,008	0,01	1 148 299	0,011	0,005	1 209 709	0,006	0,005	1 162 812	0,006	0,004	1 154 773	0,005	0,007	1 219 950	0,009	0,007
Cd Fonderie Horne		0,008	1 128 525	0,009	0,005	1 102 760	0,006	0,003	1 112 539	0,003	0,003	1 131 793	0,003	0,008	1 140 244	0,009	0,024	1 183 671	0,028	0,010

Rapport annuel et tarification

Annexe 2

1 209 682

1 100 900

0,022

0,010

0,01

0,011

1 134 930

1 082 649

0,011

0,012

0,018

0,018

1 093 888

1 144 095

0,020

0,021

0,026

0,012

(1x/3mois)		0,049	1 215 295	0,060	0,021	1 096 107	0,023	Em	issions 1 058 944	Atmosph	ériaues
	National and the second	0,006	1 101 752	0,007	0,01	1 167 337	0,012	0,009	1 246 267	0,011	0,009
Power Marco			Essai # 1			Essai # 2			Essai # 3		Émission
Paramètres (fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
Dioxines et furanes (1x/an)	(5)	0,0000000002	1 123 694	0,000000003	0,000000001	1 112 253	0,000000001	0,000000002	1 173 410	0,000000002	0,0000000002
Cl ₂ (1x/an)		ND	1 174 846	#VALEUR!	ND	1 176 244	#VALEUR!	ND '	1 071 813	#VALEUR!	#VALEUR!
HCI (1x/an)		0,20864	1 174 846	0,245	0,08929	1 176 244	0,105	0,36075	1 071 813	0,387	0,246
Hg (1x/an)	Section section	0,0002	1 158 872	0,0002	0,0000	1 188 206	0,0000	0,0001	1 197 640	0,0001	0,0001
CO (2x/5 ans)	A Maria de Caracteria de la composición dela composición de la composición de la composición dela composición del composición de la composición de la composición de la composición de la composición dela composición de la composición de la composición del composición del composición del composición dela composición dela composición dela composición del composición del composición dela com	9,66	1 140 473	11,017	15,247	1 128 066	17,200	12,97	1 094 638	14,197	14,138
NOx (2x/5 ans)		0,49	1 140 473	0,559	1,808	- 1 128 066	2,040	1,498	1 094 638	1,640	1,413

ND : Non détecté.

Cheminée C-2

Calendrier d'échantillonnage :

Année : 2010			D	ate		
Paramètres (fréquence d'échantillonnage)	Essai # 1	Essai # 2	Essai # 3	Essai # 4	Essai # 5	Essai # 6
	16-mars	19-mars	19-mars	24-mars	24-mars	24-mars
As, Bi, Sb, Pb, Cd et Matières	25-mai	25-mai	26-mai	26-mai	01-juin	01-juin
particulaires	27-sept.	27-sept.	28-sept.	29-sept.	29-sept.	30-sept.
	02-поv.	02-nov.	09-nov.	09-nov.	10-nov.	10-nov.
Dioxines et furanes (1x/an)	22-oct.	25-oct.	28-oct,			
Cl ₂ (1x/an)	19-oct.	19-oct.	19-oct.			
HCI (1x/an)	19-oct.	19-oct.	19-oct.			
Hg (1x/an)	05-oct.	06-oct.	06-oct.			
CO (2x/5 ans)	22-oct.	25-oct.	25-oct,	•		100 1
NOx (2x/5 ans)	22-oct.	25-oct.	25-oct.			

Cheminée C-4

Vérification de la norme réglementaire en brouillard d'acide à la cheminée C4 :

Paramètres (fréquence d'échantillonnage) Paramètres (fréquence	Année :	2010			Es	sai # 1			Ess	ai # 2			Es	sai # 3		
(fréquence	Daramàtrae		Date		23-nov	embre-2010			23-nove	mbre-2010			24-nov	embre-2010		Tauv
	(fréquence						d'émission				d'émission		Conc (mg/Nm³)	Débit (Nm³/h)	d'émission	
				97,316	6,87	238 280	0,017	92,065	14,35	236 046	0,035	96,915	8,12	228 684	0,019	0,035

- Le taux de production (TP) est le taux de production d'acide à 100% correspondant à la durée de chaque essai.
 Joindre les données qui ont permis de calculer le taux de production d'acide à 100%.
- 2. Le taux d'émission maximal est le taux d'émission maximal obtenu dans les 3 essais.
- 3. Aucune valeur ne doit excéder 120% de la norme soit 0,09 kg/t

Vérification de la norme réglementaire sur l'efficacité de l'usine d'acide :

Année : 2010			Essai # 1			Essai # 2			Essai # 3		
Paramètres	Date	23	-novembre-	2010	23-	novembre-2	010	2	4-novembre-20	10	Émission
(fréquence d'échantillonnage)		Conc (ma/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (ma/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
SO ₂ (1x/an)		3618,74	238 280	862,273367	4189,98	236 046	989,028019	4261,71	228 684	974,58489	941,962092

En utilisant de la méthode de calcul précisée à l'annexe 4-B de la Partie VII de l'attestation, calculer l'efficacité de l'usine d'acide. Joindre les calculs.

Quantité de SO ₂ émis (t)	2,0
Quantité de SO ₂ dans l'acide (t)	135,24
Efficacité de l'usine (%)	98,52%

PARTITION OF THE PARTIT			
Norme d'eff	icacité	: 9	96%

Suivi des émissions à la cheminée C4 :

Année: 2010					-		and the second				
Paramètres			Essai # 1			Essai # 2			Essai # 3		Émission
(fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
Dioxines et furanes (1x/an)	Note 1	2,95E-10	224 080	6,6081E-11	6,428E-10	225 041	1,4466E-10	2,525E-10	219 741	5,5485E-11	8,8741E-11
Cl ₂ (1x/an)	Note 2	ND	235 694	#VALEUR!	ND	240 523	#VALEUR!	ND	242 960	#VALEUR!	#VALEUR!
HCI (1x/an)	Note 3	0,29963	235 694	0,07062099	0,51852	240 523	0,12471599	0,58929	242 960	0,1431739	0,11283696
Hg (1x/an)	Note 4	0,003	212 187	0,00063656	0,005	222 869	0,00111435	0,005	222 210	0,00111105	0,00095399

Note 1 : Le premier et le deuxième essai ont été effectués le 29 novembre et le troisième le 30 novembre.

Note 2 : Les 3 essais ont été effectués le 18 novembre.

Note 3 : Les 3 essais ont été effectués le 18 novembre.

Note 4 : Le premier essai a été effectué le 07 avril, le deuxième et le troisième ont été effectué le 19 mai.

ND: Non détecté.

Calcul du taux de production								
9 99	Essai #1	Essai #2	Essai #3					
durée de l'essai (h)	2,5	2,0	2,0					
production d'acide à 100% (t)	243,29	184,13	193,83					
TP (t/h)	97,316	92,065	96,915					

	Tonnes de SO ₂ émis	Tonnes de SO ₂ dans l'acide
	pendant la	durée des essais
Essai #1	2,2	158,89
Essai #2	2,0	120,25
Essai #3	1,9	126,58
тоуеппе	2.0	135.24
Efficacité (%)	98,52%	

Cheminée C-2

Vérification de la norme supplémentaire en matières particulaires :

		TA		Essai # 1			Essai # 2			Essai # 3		Essai # 4		Essai # 5			Essai # 6			Taux	
Paramètres (fréquence d'échantillonnage)	Date	TA (t/h) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	d'émission
	(5)	124	8,7	1 152 505	0,080861238	11,9	1 110 468	0,106569106	35,4	1 131 954	0,32315461	39,3	1 161 982	0,3682733	36,1	1 130 336	0,3290736	25,3	1 116 332	0,2277677	0,239
Matières particulaires		130	14,5	1 121 719	0,125081575	18,7	1 092 027	0,157042155	27,5	1 208 124	0,2554968	6,9	1 094 400	0,058072	18,8	1 116 859	0,1614721	9,2	1 124 120	0,079532	0,139
1x/3 mois)		129	42,4	1 139 498	0,374650124	32,9	1 212 912	0,309436576	43,2	1 192 685	0,39953604	38,5	1 080 848	0,3226798	26,6	1 168 211	0,2409625	30,9	1 082 770	0,2594425	0,318
		130	75,9	1 115 384	0,653123974	85,3	1 171 197	0,770740929	70,8	1 171 292	0,6397759	44,6	1 152 553	0,3965749	56,6	1 123 943	0,4907837	76,9	1 157 818	0,686904	0,606
																	Tau	x d'émissic	ın moyen anr	nuel (kg/t) (3)	0,326
																			Norme ar	nnuelle (kg/t)	0,6
Alimentation annuelle (t/an) (4)	1 066 908										11.9								Émission ar	muelle (t/an)	347,501

- Le taux d'alimentation (TA), exprimé en tonnes à l'heure d'opération, correspond au tonnage moyen trimestriel des matières introduites au procédé. (voir Matières introduites au procédé ci-dessous)
- 2. Pour chaque trimestre, le taux d'émission moyen (kg/t) correspond au calcul de la moyenne arithmétique des essais.
- 3. La moyenne annuelle est la moyenne arithmétique des taux d'émission moyens trimestriels.
- 4. L'alimentation annuelle correspond à la somme des matières introduites au procédé durant l'année.
- 5. Un tableau, au bas de la feuille, présente les dates d'échantillonnage pour les différents paramètres.

Matières introduites au procédé :

Cheminée C-2

Suivi de l'échantillonnage :

Paramètres			Essai # 1			Essai # 2			Essai # 3			Essai # 4			Essai # 5	1		Essai # 6		Émission
(fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	
	(5)	0,727	1 152 505	0,838	0,797	1 110 468	0,885	2,468	1 131 954	2,794	1,785	1 161 982	2,074	1,281	1 130 336	1,448	1,390	1 116 332	1,552	1,598
As		1,307	1 121 719	1,466	1,379	1 092 027	1,506	2,000	1 208 124	2,416	0,813	1 094 400	0,890	0,803	1 116 859	0,897	1,131	1 124 120	1,271	1,408
(1x/3mois)	100000000000000000000000000000000000000	3,139	1 139 498	3,577	1,216	1 212 912	1,475	3,015	1 192 685	3,596	1,326	1 080 848	1,433	0,934	1 168 211	1,091	1,225	1 082 770	1,326	2,083
No. 15 Telephone Company of the Comp	literanierswat	2,638	1 115 384	2,942	2,065	1 171 197	2,419	0,991	1 171 292	1,161	1,647	1 152 553	1,898	1,448	1 123 943	1,627	1,962	1 157 818	2,272	2,053
		0,059	1 152 505	0,068	0,052	1 110 468	0,058	0,243	1 131 954	0,275	0,440	1 161 982	0,511	0,208	1 130 336	0,235	0,205	1 116 332	0,229	0,229
Bi		0,100	1 121 719	0,112	0,120	1 092 027	0,131	0,404	1 208 124	0,488	0,061	1 094 400	0,067	0,096	1 116 859	0,107	0,112	1 124 120	0,126	0,172
(1x/3mois)		0,233	1 139 498	0,266	0,162	1 212 912	0,196	0,219	1 192 685	0,261	0,142	1 080 848	0,153	0,055	1 168 211	0,064	0,072	1 082 770	0,078	0,170
Section 1997		0,291	1 115 384	0,325	0,289	1 171 197	0,338	0,218	1 171 292	0,255	0,158	1 152 553	0,182	0,121	1 123 943	0,136	0,253	1 157 818	0,293	0,255
		0,038	1 152 505	0,044	0,043	1 110 468	0,048	0,147	1 131 954	0,166	0,073	1 161 982	0,085	0,040	1 130 336	0,045	0,032	1 116 332	0,036	0,071
Sb		0,040	1 121 719	0,045	0,085	1 092 027	0,093	0,072	1 208 124	0,087	0,023	1 094 400	0,025	0,011	1 116 859	0,012	0,024	1 124 120	0,027	0,048
(1x/3mois)		0,063	1 139 498	0,072	0,041	1 212 912	0,050	0,061	1 192 685	0,073	0,049	1 080 848	0,053	0,029	1 168 211	0,034	0,031	1 082 770	0,034	0,052
	ilay e waxay ii bal	0,085	1 115 384	0,095	0,090	1 171 197	0,105	0,060	1 171 292	0,070	0,044	1 152 553	0,051	0,051	1 123 943	0,057	0,076	1 157 818	0,088	0,078
The second secon	Service draw	1,750	1 152 505	2,017	2,143	1 110 468	2,380	6,107	1 131 954	6,913	6,362	1 161 982	7,393	2,856	1 130 336	3,228	4,786	1 116 332	5,343	4,545
Pb		1,887	1 121 719	2,117	4,371	1 092 027	4,773	4,126	1 208 124	4,985	1,095	1 094 400	1,198	8,613	1 116 859	9,620	2,225	1 124 120	2,501	4,199
(1x/3mois)		3,309	1 139 498	3,771	2,743	1 212 912	3,327	3,048	1 192 685	3,635	2,049	1 080 848	2,215	1,295	1 168 211	1,513	1,466	1 082 770	1,587	2,675
		3,667	1 115 384	4,090	3,421	1 171 197	4,007	2,720	1 171 292	3,186	3,790	1 152 553	4,358	3,711	1 123 943	4,171	4,769	1 157 818	5,522	4,224
		0,015	1 152 505	0,017	0,022	1 110 468	0,024	0,038	1 131 954	0,043	0,022	1 161 982	0,026	0,009	1 130 336	0,010	0,009	1 116 332	0,010	0,022
Cd		0,005	1 121 719	0,006	0,004	1 092 027	0,004	0,006	1 208 124	0,007	0,003	1 094 400	0,003	0,050	1 116 859	0,056	0,006	1 124 120	0,007	0,014
(1x/3mois)		0,034	1 139 498	0,039	0,030	1 212 912	0,036	0,035	1 192 685	0,042	0,039	1 080 848	0,042	0,033	1 168 211	0,039	0,035	1 082 770	0,038	0,039
		0,146	1 115 384	0,163	0,199	1 171 197	0,233	0,250	1 171 292	0,293	0,052	1 152 553	0,060	0,051	1 123 943	0,057	0,081	1 157 818	0,094	0,150
			Essai # 1			Essai # 2			Essai # 3		Émission									
Paramètres (fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)									
Dioxines et furanes (1x/an)	(5)	0,000000004	1 221 346	0,000000005	0,000000007	1 229 684	0,000000009	0,000000006	1 145 053	0,000000006	0,000000007									
Cl ₂ (1x/an)		1,17978	918 340	1,083439165	0,26978	961 125	0,259292303	0,2521	1 035 993	0,261173835	0,534635101									
HOLD AND A		0.55005	04004		and the same and the little s			Proposition September 1990	artini stranovistanje (1914)			1								

2,08403 1 035 993 2,159040492 3,076516121

3,803008234

0,0005

0,99999924 20,96513561 1 060 332 22,230004174 17,09362798 1 015 583 17,359997985 13,530000694

961 125

1 073 421

1 060 332

Calendrier d'échantillonnage :

HCI (1x/an)

Hg (1x/an)

CO (2x/5 ans)

NOx (2x/5 ans)

Année : 2011)ate		
Paramètres (fréquence d'échantillonnage)	Essai # 1	Essai # 2	Essai # 3	Essai # 4	Essai # 5	Essai # 6
A- Di OL DL OJ I	07-mars	09-mars	10-mars	15-mars	17-mars	17-mars
As, Bi, Sb, Pb, Cd et	10-mai	12-mai	16-mai	16-mai	17-mai	17-mai
Matières particulaires	08-août	08-août	09-août	09-août	10-août	10-août
	05-oct	05-oct	06-oct	29-nov	30-nov	30-nov
Dioxines et furanes (1x/an)	15-août	15-août	16-août			
Cl ₂ (1x/an)	12-juillet	12-juillet	12-juillet			
HCI (1x/an)	12-juillet	12-juillet	12-juillet			
Hg (1x/an)	18-mai	05-juillet	11-juillet			
CO (2x/5 ans)	05-juillet	11-juillet	11-juillet			
NOx (2x/5 ans)	05-juillet	11-juillet	11-juillet			

0,0005

14,60550129 1 006 470

0,993571516 1 006 470

1 083 204

3,267499637

14,699998880 0,518705559

0.0005

3,95683

0.0003

Cheminée C-4

Vérification de la norme réglementaire en brouillard d'acide à la cheminée C4 :

Année :	2011			Es	sai # 1			Ess	ai # 2			Es	sai # 3			
		Stands of		04-	mai-11	e i e i o i o		05-1	nai-11			09-	mai-11		Taux	Taux
Paramètres (fréquence d'échar	ntillonnage)	Date	TP (t/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t) (3)	TP (Vh)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t) (3)	TP (Vh)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t) (3)	d'émission	d'émission
H ₂ SO ₄ + SO ₃ (1x/an)			90,98	31,67	241 941	0,08422	87,235	37,75	236 461	0,10233	90,476	34,47	216 074	0,08232	0,08962	0,10233
														Norme (kg/t)	0,075	0,09

- Le taux de production (TP) est le taux de production d'acide à 100% correspondant à la durée de chaque essai.
 Joindre les données qui ont permis de calculer le taux de production d'acide à 100%.
- 2. La moyenne des trois essais (TE) ne doit pas dépasser la norme de 0.075 kg/t.
- Le taux d'émission maximal est le taux d'émission maximal obtenu dans les 3 essais.
 Aucune valeur ne doit excéder 120% de la norme, soit 0,09 kg/t.

Vérification de la norme réglementaire sur l'efficacité de l'usine d'acide :

Année :	2011			Essai # 1			Essai # 2			Essai # 3		
Paramètres			A STATE OF THE	04-mai-11			05-mai-11		WILE SE	09-mai-11		Émission
(fréquence d'écha	antillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
SO ₂ (1x/an)			2227,77	241 941	538,988902	3657,43	236 461	864,839555	5161,23	216 074	1115,20761	839,678689

En utilisant de la méthode de calcul précisée à l'annexe 4-B de la Partie VII de l'attestation, calculer l'efficacité de l'usine d'acide. Joindre les calculs.

Quantité de SO ₂ émis (t)	1,87
Quantité de SO ₂ dans l'acide (t)	126,83
Efficacité de l'usine (%)	98,55%

Norme d'efficacité: 96%

Suivi des émissions à la cheminée C4 :

Année : 2011											
Paramètres			Essai # 1			Essai # 2			Essai # 3		Émission
(fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
Dioxines et furanes (1x/an)	Note 1	2,16E-09	224 563	4,853E-10	6,2595E-09	216 224	1,3535E-09	4,6639E-09	217 328	1,0136E-09	9,5078E-10
Cl ₂ (1x/an)	Note 2	ND	216 635	#VALEUR!	ND	213 797	#VALEUR!	ND	227 919	#VALEUR!	#VALEUR!
HCI (1x/an)	Note 3	1,60514	216 635	0,3477295	1,63399	213 797	0,34934216	1,02919	227 919	0,23457196	0,31054787
Hg (1x/an)	Note 4	0,011787	224 799	0,00264971	0,015807	211 146	0,00333758	0,015907	222 156	0,00353384	0,00317371

Note 1 : Le premier essai a été effectué le 08 septembre, le deuxième essai le 14 septembre et le troisième essai le 16 septembre.

Note 2 : Les 3 essais ont été effectués le 13 juillet. Note 3 : Les 3 essais ont été effectués le 13 juillet.

Note 4 : Le premier essai a été effectué le 02 mai, les deuxième et troisième essais le 03 mai.

ND: Non détecté.

Calcul du taux de production								
	Essai #1	Essai #2	Essai #3					
durée de l'essai (h)	2	2	2,5					
production d'acide à 100% (t)	181,96	174,47	226,19					
TP (t/h)	90,98	87,235	90,476					

9 9	Tonnes de SO ₂ émis	Tonnes de SO ₂ dans l'acide
	pendant la	durée des essais
Essai #1	1,08	118,83
Essai #2	1,73	113,94
Essai #3	2,79	147,72
moyenne	1,87	126,83
Efficacité (%)	98,55%	

Cheminée C-2

Vérification de la norme supplémentaire en matières particulaires :

				Essai # 1		1	Essai # 2			Essai # 3			Essai # 4			Essai # 5			Essai # 6	1000	Taux
Paramètres (fréquence d'échantillonnage)	Date	(Vh) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	d'émission moyen (kg/t) (2)
	(5)	124	23,0	1 099 743	0,203984589	16,4	1 196 887	0,158297958	13,0	1 182 152	0,12393529	8,7	1 161 712	0,0815072	23,2	1 207 636	0,2259448	13,8	1 140 421	0,1269178	0,153
Matières particulaires		131	38,5	1 191 644	0,350215985	20,1	1 128 284	0,173118385	24,5	1 197 113	0,223887546	21,4	1 188 871	0,1942125	38,5	1 195 994	0,3514944	20,9	1 255 112	0,2002431	0,249
(1x/3 mois)		131	18,7	1 047 242	0,149491797	17,9	1 176 972	0,160822892	12,7	1 182 902	0,114678285	21,6	1 129 563	0,1862486	16,3	1 153 120	0,1434798	14,2	1 198 323	0,1298946	0,147
		124	11,7	1 150 927	0,108595531	10,7	1 146 722	0,098951011	9,1	1 200 081	0,08807046	8,6	1 221 054	0,084686	20,7	1 248 475	0,2084148	13,7	1 137 415	0,125666	0,119
	-																Tau	x d'émissio	n moyen anı	nuel (kg/t) (3)	0,167
	100																		Norme a	nnuelle (kg/t)	0,6
Alimentation annuelle (t/an) (4)	1 047 322																		Émission a	nnuelle (t/an)	175,110

- Le taux d'alimentation (TA), exprimé en tonnes à l'heure d'opération, correspond au tonnage moyen trimestriel des matières introduites au procédé. (voir Matières introduites au procédé ci-dessous)
- 2. Pour chaque trimestre, le taux d'émission moyen (kg/t) correspond au calcul de la moyenne arithmétique des essais.
- 3. La moyenne annuelle est la moyenne arithmétique des taux d'émission moyens trimestriels.
- 4. L'alimentation annuelle correspond à la somme des matières introduites au procédé durant l'année.
- 5. Un tableau, au bas de la feuille, présente les dates d'échantillonnage pour les différents paramètres.

Matières introduites au procédé:

Cheminée C-2

Suivi de l'échantillonnage :

			Essai # 1			Essai # 2			Essai # 3			Essai # 4			Essai # 5			Essai # 6		Émissio
Paramètres (fréquence d'échantillonnage)	Date	Conc (ma/Nm³)	Débit (Nm³/h) Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
	(5)	1,134	1 099 743	1,247	0,766	1 196 887	0,917	0,743	1 182 152	0,878	0,768	1 161 712	0,892	1,214	1 207 636	1,466	1,128	1 140 421	1,286	1,114
As		0,851	1 191 644	1,014	1,051	1 128 284	1,186	1,239	1 197 113	1,483	1,714	1 188 871	2,038	1,935	1 195 994	2,314	0,802	1 255 112	1,007	1,507
1x/3mois)		0,594	1 047 242	0,622	2,225	1 176 972	2,619	1,753	1 182 902	2,074	2,186	1 129 563	2,469	0,911	1 153 120	1,050	1,001	1 198 323	1,200	1,672
		0,624	1 150 927	0,718	0,571	1 146 722	0,655	0,56	1 200 081	0,672	0,431	1 221 054	0,526	1,761	1 248 475	2,199	0,628	1 137 415	0,714	0,914
		0,166	1 099 743	0,183	0,118	1 196 887	0,141	0,076	1 182 152	0,090	0,054	1 161 712	0,063	0,237	1 207 636	0,286	0,171	1 140 421	0,195	0,160
Bi -		0,087	1 191 644	0,104	0,286	1 128 284	0,323	0,219	1 197 113	0,262	0,161	1 188 871	0,191	0,485	1 195 994	0,580	0,14	1 255 112	0,176	0,273
(1x/3mois)		0,07	1 047 242	0,073	0,199	1 176 972	0,234	0,161	1 182 902	0,190	0,192	1 129 563	0,217	0,115	1 153 120	0,133	0,089	1 198 323	0,107	0,159
	Times	0,075	1 150 927	0,086	0,087	1 146 722	0,100	0,086	1 200 081	0,103	0,042	1 221 054	0,051	0,185	1 248 475	0,231	0,147	1 137 415	0,167	0,123
the second second second		0,032	1 099 743	0,035	0,026	1 196 887	0,031	0,017	1 182 152	0,020	0,02	1 161 712	0,023	0,049	1 207 636	0,059	0,033	1 140 421	0,038	0,034
Sb		0,038	1 191 644	0,045	0,049	1 128 284	0,055	0,036	1 197 113	0,043	0,044	1 188 871	0,052	0,067	1 195 994	0,080	0,034	1 255 112	. 0,043	0,053
(1x/3mois)		0,046	1 047 242	0,048	0,253	1 176 972	0,298	0,065	1 182 902	0,077	0,082	1 129 563	0,093	0,058	1 153 120	0,067	0,035	1 198 323	0,042	0,104
		0,031	1 150 927	0,036	0,023	1 146 722	0,026	0,022 .	1 200 081	0,026	0,013	1 221 054	0,016	0,043	1 248 475	0,054	0,026	1 137 415	0,030	0,031
		6,247	1 099 743	6,870	3,804	1 196 887	4,553	1,595	1 182 152	1,886	1,663	1 161 712	1,932	4,25	1 207 636	5,132	4,017	1 140 421	4,581	4,159
Pb		4,433	1 191 644	5,283	5,948	1 128 284	6,711	3,101	1 197 113	3,712	2,576	1 188 871	3,063	5,701	1 195 994	6,818	2,815	1 255 112	3,533	4,853
(1x/3mois)		8,944	1 047 242	9,367	4,109	1 176 972	4,836	3,886	1 182 902	4,597	5,62	1 129 563	6,348	4,635	1 153 120	5,345	3,35	1 198 323	4,014	5,751
		2,568	1 150 927	2,956	1,625	1 146 722	1,863	1,941	1 200 081	2,329	1,098	1 221 054	1,341	3,728	1 248 475	4,654	2,948	1 137 415	3,353	2,749
1000		0,011	1 099 743	0,012	0,014	1 196 887	0,017	0,02	1 182 152	0,024	0,011	1 161 712	0,013	0,051	1 207 636	0,062	0,045	1 140 421	0,051	0,030
Cd		0,084	1 191 644	0,100	0,034	1 128 284	0,038	0,053	1 197 113	0,063	0,073	1 188 871	0,087	0,095	1 195 994	0,114	0,096	1 255 112	0,120	0,087
(1x/3mois)		0,019	1 047 242	0,020	0,151	1 176 972	0,178	0,168	1 182 902	0,199	0,029	1 129 563	0,033	0,017	1 153 120	0,020	0,036	1 198 323	0,043	0,082
		0,004	1 150 927	0,005	0,009	1 146 722	0,010	0,005	1 200 081	0,006	0,007	1 221 054	0,009	0,026	1 248 475	0,032	0,025	1 137 415	0,028	0,015
Paramètres			Essai # 1			Essai # 2			Essai #3		Émission									
fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)									
Dioxines et furanes (1x/an)	(5)	0,000000002	1 206 123	0,000000002	0,000000021	1 231 859	0,000000026	0,000000002	1 183 861	0,0000000002	0,000000010									
CL (1y/an)		3.22061	1 088 879	3,506854596	0	1 217 184	0.000000000	0	1 203 799	0.000000000	1.168951532									

1 203 799

1 217 404

1 189 549

4,400

5,966666667

0,976666667

Calendrier d'échantillonnage :

HCI (1x/an)

Hg (1x/an)

CO (2x/5 ans)

NOx (2x/5 ans)

Année : 2012			l l	Date	4.00	
Paramètres (fréquence d'échantillonnage)	Essai # 1	Essai # 2	Essai # 3	Essai # 4	Essai # 5	Essai # 6
	19-mars	20-mars	20-mars	21-mars	27-mars	27-mars
As, Bi, Sb, Pb, Cd et Matières	01-mai	02-mai	02-mai	03-mai	07-mai	07-mai
particulaires	26-juillet	14-août	14-août	15-août	15-août	16-août
	18-octobre	18-octobre	19-octobre	19-octobre	22-octobre	22-octobre
Dioxines et furanes (1x/an)	24-octobre	25-octobre	25-octobre			
Cl ₂ (1x/an)	20-août	. 20-août	20-août			
HCI (1x/an)	20-août	20-août	20-août			
Hg (1x/an)	29-mars	29-mars	03-avril			
CO (2x/5 ans)	20-août	20-août	20-août			
NOx (2x/5 ans)	20-août	20-août	20-août			

2,228005869

2,145487133 1 211 846

1 088 879

1 211 846

5,610971709

2,700

1 217 184

1 164 571

1 192 586

1 192 586

9,055950682

0,436579557

0,000135090

10,800

0,87336

3,698880836

Fonderie Horne Rapport annuel et tarification

Cheminée C-4

Vérification de la norme réglementaire en brouillard d'acide à la cheminée C4 :

Année :	2012			Es	sai # 1			Ess	ai # 2			Es	sai # 3			
-				27-	août-12			28-a	oût-12			01-	oct-12		Taux	Taux
Paramètres fréquence d'échantillonnage)	Date	TP (l/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t) (3)	TP (<i>V</i> h) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t) (3)	TP (vh)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l) (3)	d'émicolon	d'émission	
f₂SO₄ + SO₃ 1x/an)			95,36	12,72	220 988	0,02948	99,98	8,68	228 465	0,01983	98,212	10,69	216 059	0,02352	0,024	0,029
														Norme (kg/t)	0,075	0,09

- Le taux de production (TP) est le taux de production d'acide à 100% correspondant à la durée de chaque essai.
 Joindre les données qui ont permis de calculer le taux de production d'acide à 100%.
- 2. La moyenne des trois essais (TE) ne doit pas dépasser la norme de 0.075 kg/t.
- 3. Le taux d'émission maximal est le taux d'émission maximal obtenu dans les 3 essais. Aucune valeur ne doit excéder 120% de la norme, soit 0,09 kg/t.

Vérification de la norme réglementaire sur l'efficacité de l'usine d'acide :

Année :	2012		Essai # 1	Essai # 2	Essai # 3	
Paramètres			27-août-12	28-août-12	01-oct-12	Émission
(fréquence d'échantillo	nnage)	Date	Conc (mg/Nm³) Débit (Nm³/h) Émission (kg/h)	Conc (mg/Nm³) Débit (Nm³/h) Émission (kg/h)	Conc Débit (Nm³/h) Émission (kg/h)	moyenne (kg/h)
SO ₂ (1x/an)			3985,35 220 988 880,714526	4089,65 228 465 934,341887	2806,45 216 059 606,358781	807,138398

En utilisant de la méthode de calcul précisée à l'annexe 4-B de la Partie VII de l'attestation, calculer l'efficacité de l'usine d'acide. Joindre les calculs.

Quantité de SO₂ émis (t)	1,72
Quantité de SO ₂ dans l'acide (t)	138,49
Efficacité de l'usine (%)	98,78%

Norme d'efficacité: 96%

Suivi des émissions à la cheminée C4 :

Année : 2012											
Paramètres			Essai # 1			Essai # 2			Essai # 3		Émission
(fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
Dioxines et furanes (1x/an)	Note 1	1,23E-09	224 740	2,7731E-10	4,0744E-09	230 835	9,4051E-10	3,308E-10	233 357	7,7194E-11	4,3167E-10
Cl ₂ (1x/an)	Note 2	2,55832	224 741	0,5749594	2,66003	226 206	0,60171475	2,66773	218 509	0,58292301	0,58653239
HCI (1x/an)	Note 3	0,48212	224 741	0,10835213	0,45942	226 206	0,10392356	0,39936	218 509	0,08726375	0,09984648
Hg (1x/an)	Note 4	0,006638	210 917	0,00140007	0,008018	212 015	0,00169994	0,01284	233 652	0,00300009	0,00203336

Note 1 : Le premier essai a été effectué le 30 octobre, le deuxième essai le 31 octobre et le troisième essai le 01 novembre.

Note 2 : Les 3 essais ont été effectués le 21 août. Note 3 : Les 3 essais ont été effectués le 21 août.

Note 4 : Le premier ainsi que le deuxième essai ont été effectués le 15 mai et le troisième essai le 16 mai.

, ili	Calcul du tau	x de production	1.6
	Essai #1	Essai #2	Essai #3
durée de l'essai (h)	2	2	2,5
production d'acide à 100% (t)	190,72	199,96	245,53
TP (t/h)	95,36	99,98	98,212

	Tonnes de SO ₂ émis	Tonnes de SO ₂ dans l'acide
	pendant la	durée des essais
Essai #1	1,76	124,55
Essai #2	1,87	130,59
Essai #3	1,52	160,34
moyenne	1,72	138,49
Efficacité (%)	98,78%	

heminée C-2 fication de la norme supp	lémentaire e	n matières p	particulaire	ricksto du D	evolopponer	Sold Sold Sold Sold Sold Sold Sold Sold	E	A Emissions	nnexe 2 Atmos		3 .										
Année : 2013 Paramètres fréquence d'échantillonnage)	Date	TA (Vh) (1)	Conc (mg/Nm³)	Essai # 1 Débit (Nm³/h)		Conc (mg/Nm³	Essai # 2		Conc (mg/Nm³)	Essai # 3 Débit (Nm³/h)	Taux d'émission	Conc (mg/Nm³)	Essai # 4 Débit (Nm³/h)	Taux d'émission	Conc (mg/Nm³)	Essai # 5 Débit ,	Taux d'émission	Conc (mg/Nm³)	Essai # 6 Débit (Nm²/h)	Taux d'émission	Taux d'émissi moyen (kg/
	(5)	127 -	18,8	1 064 661	(kg/l) 0,157603361	19,5	1 270 844	(kg/l) 0,195129591	35,3	1 209 540	(kg/l) 0,336194976	18,9	1 121 835	0.1669502	16,9		(kg/t) 0,1485853	26,8	a december of the second second second	0,2302867	- Residence of the second seco
Matières particulaires		135	15,5	1 181 937	0,135703878	24,5	1 198 549	0,217514448	14,9		0,134851733	5,8	1 133 187		10,7	1 152 194	0,091322	11,2	1 114 564	0,0924675	
1x/3 mois)		133	19,1	1 178 928	0,169304698	17,7	1 155 771	0,153813133	38,0	1 219 848	0,348528	12,3	1 105 110		28,8	1 159 938	0,2511745	52,0	1 136 747	0,4444424	
		137	25,4	1 118 565	0,207383584	29,2	1 121 163	0,238963209	21,6	1 099 313	0,173322342	19,3	1 141 024	0,1607428	28,0	1 143 397	0,233687	32,4	1 063 567	0,2515297	0,211
										200							Tau	ıx d'émissio	on moyen and Norme ar	uel (kg/t) (3) inuelle (kg/t)	(
imentation annuelle (t/an) (4)	1 120 104																		Émission ar	nuelle (t/an)	218,90

1. Le taux d'alimentation (TA), exprimé en tonnes à l'heure d'opération, correspond au tonnage moyen trimestriel des matières introduites au procédé. (voir Matières introduites au procédé ci-dessous)

- 2. Pour chaque trimestre, le taux d'émission moyen (kg/t) correspond au calcul de la moyenne arithmétique des essais.
- 3. La moyenne annuelle est la moyenne arithmétique des taux d'émission moyens trimestriels.
- 4. L'alimentation annuelle correspond à la somme des matières introduites au procédé durant l'année.
- 5. Un tableau, au bas de la feuille, présente les dates d'échantillonnage pour les différents paramètres.

Matières introduites au procédé:

Cheminée C-2

Suivi de l'échantillonnage :

Année : 2013																				
			Essai # 1		I	Essai # 2		I	Essai # 3		I	Essai # 4			Essai # 5			Essai # 6		Émission
Paramètres (fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Cone (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Cone (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenn (kg/h)
	(5)	1,145	1 064 661	1,219	0,684	1 270 844	0,869	2,136	1 209 540	2,584	0,784	1 121 835	0,880	0,911	1 116 588	1,017	2,003	1 091 284	2,186	1,459
As		1,629	1 181 937	1,925	2,358	1 198 549	2,826	0,581	1 221 811	0,710	0,455	1 133 187	0,516	0,352	1 152 194	0,406	0,756	1 114 564	0,843	1,204
1x/3mois)	0.00	2,804	1 178 928	3,306	1,314	1 155 771	1,519	2,814	1 219 848	3,433	1,346	1 105 110	1,487	3,126	1 159 938	3,626	2,723	1 136 747	3,095	2,744
		2,489	1 118 565	2,784	2,404	1 121 163	2,695	2,131	1 099 313	2,343	1,776	1 141 024	2,026	2,433	1 143 397	2,782	3,768	1 063 567	4,008	2,773
		0,084	1 064 661	0,089	0,094	1 270 844	0,119	0,21	1 209 540	0,254	0,139	1,121,835	0,156	0,07	1 116 588	0,078	0,151	1 091 284	0,165	0,144
Bi		0,144	1 181 937	0,170	0,258	1 198 549	0,309	0,076	1 221 811	0,093	0,025	1 133 187	0,028	0,03	1 152 194	0,035	0,033	1 114 564	0,037	0,112
1x/3mois)		0,101	1 178 928	0,119	0,075	1 155 771	0,087	0,277	1 219 848	0,338	0,133	1 105 110	0,147	0,151	1 159 938	0,175	0,261	1 136 747	0,297	0,194
		0,09	1 118 565	0,101	0,147	1 121 163	0,165	0,138	1 099 313	0,152	0,103	1 141 024	0,118	0,169	1 143 397	0,193	0,259	1 063 567	0,275	0,167
		0,044	1 064 661	0,047	0,049	1 270 844	0,062	0,077	1 209 540	0,093	0,021	1 121 835	0,024	0,031	1 116 588	0,035	0,038	1 091 284	0,041	0,050
Sb -		0,041	1 181 937	0,048	0,054	1 198 549	0,065	0,016	1 221 811	0,020	0,013	1 133 187	0,015	0,016	1 152 194	0,018	0,024	1 114 564	0,027	0,032
1x/3mois)		0,054	1 178 928	0,064	0,032	1 155 771	0,037	0,09	1 219 848	0,110	0,033	1 105 110	0,036	0,076	1 159 938	0,088	0,094	1 136 747	0,107	0,074
		0,066	1 118 565	0,074	0,058	1 121 163	0,065	0,048	1 099 313	0,053	0,024	1 141 024	0,027	0,045	1 143 397	0,051	0,102	1 063 567	0,108	0,063
		1,664	1 064 661	1,772	6,305	1 270 844	8,013	5,335	1 209 540	6,453	5,513	1 121 835	6,185	6,379	1 116 588	7,123	8,214	1 091 284	8,964	6,418
Pb		4,037	1 181 937	4,771	5,526	1 198 549	6,623	4,191	1 221 811	5,121	0,559	1 133 187	0,633	0,637	1 152 194	0,734	1,027	1 114 564	1,145	3,171
1x/3mois)		1,846	1 178 928	2,176	1,179	1 155 771	1,363	2,743	1 219 848	3,346	1,585	1 105 110	1,752	1,841	1 159 938	2,135	2,287	1 136 747	2,600	2,229
		3,957	1 118 565	4,426	2,55	1 121 163	2,859	2,328	1 099 313	2,559	1,928	1 141 024	2,200	2,198	1 143 397	2,513	5,577	1 063 567	5,932	3,415
		0,016	1 064 661	0,017	0,004	1 270 844	0,005	0,019	1 209 540	0,023	0,006	1 121 835	0,007	0,005	1 116 588	0,006	0,022	1 091 284	0,024	0,014
Cd	a company	0,01	1 181 937	0,012	0,013	1 198 549	0,016	0,006	1 221 811	0,007	0,009	1 133 187	0,010	0,008	1 152 194	0,009	0,005	1 114 564	0,006	0,010
x/3mois)		0,013	1 178 928	0,015	0,01	1 155 771	0,012	0,013	1 219 848	0,016	0,004	1 105 110	0,004	0,012	1 159 938	0,014	0,011	1 136 747	0,013	0,012
		0,039	1 118 565	0,044	0,061	1 121 163	0,068	0,03	1 099 313	0,033	0,016	1 141 024	0,018	0,063	1 143 397	0,072	0,048	1 063 567	0,051	0,048
			Essai # 1			Essai # 2			Essai # 3		Émission									
ramètres quence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)									
Dioxines et furanes (1x/an)	(5)	0,000000003	1 118 743	0,000000003	0,000000012		0,000000013	0,000000007	1 130 673	0,000000008	0,0000000008	1								
Cl ₂ (1x/an)		0	1 186 914	0,000000000	0	1 166 795	0,000000000	0	1 140 721	0,000000000	0,000000000	1								

Calendrier d'échantillonnage:

HCI (1x/an)

Hg (1x/an)

CO (2x/5 ans)

NOx (2x/5 ans)

Année : 2013			D.	ate		
Paramètres (fréquence d'échantillonnage)	Essai # 1	Essai # 2	Essai # 3	Essai # 4	Essai # 5	Essai # 6
An Bi Ch Bh Cd -hM-di)	20-mars	25-mars	25-mars	25-mars	26-mars	26-mars
As, Bi, Sb, Pb, Cd et Matières particulaires	18-avril	18-avril	22-avril	14-mai	14-mai	15-mai
particulaires	30-juillet	30-juillet	31-juillet	31-juillet	31-juillet	31-juillet
	02-octobre	09-octobre	09-octobre	14-novembre	14-novembre	19-novembre
Dioxines et furanes (1x/an)	09-avril	10-avril	15-avril			
Cl ₂ (1x/an)	05-avril	05-avril	05-avril			
HCI (1x/an)	05-avril	05-avril	05-avril			
Hg (1x/an)	25-septembre	26-septembre	26-septembre			
CO (2x/5 ans)	06-mars	06-mars	06-mars			
NOx (2x/5 ans)	06-mars	06-mars	06-mars			

0,62791

2,194652334

1 125 463

1 125 463

0,745275170

2,470

1,00467

0,000108

2,870547362

2,122066531

1 166 795

1 215 796

1,172243933

3,490

1,21429

6,454591905

1 140 721

1 219 287

1,385166103

Fonderie Horne Rapport annuel et tarification

Cheminée C-4

Vérification de la norme réglementaire en brouillard d'acide à la cheminée C4 :

Année : 2013			Es	sai # 1			Ess	ai # 2			Essa				
			09-	sept-13			10-sept-13				10-se	ot-13		Taux	Taux
Paramètres (fréquence d'échantillonnage)	Date	TP (Vh)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l) (3)	TP (vh) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l) (3)	TP (Vh) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/l) (3)	1	
H ₂ SO ₄ + SO ₃ 1x/an)		92,84	- 6,52	195 061	0,01370	83,02	22,3	207 495	0,05574	88,092	7,87	209 741	0,01874	0,029	0,056
													Norme (kg/t)	0,075	0,09

- Le taux de production (TP) est le taux de production d'acide à 100% correspondant à la durée de chaque essai.
 Joindre les données qui ont permis de calculer le taux de production d'acide à 100%.
- 2. La moyenne des trois essais (TE) ne doit pas dépasser la norme de 0.075 kg/t.
- Le taux d'émission maximal est le taux d'émission maximal obtenu dans les 3 essais.
 Aucune valeur ne doit excéder 120% de la norme, soit 0,09 kg/t.

Vérification de la norme réglementaire sur l'efficacité de l'usine d'acide :

Année : 2013		Essai#1			Essai # 2			Essai # 3		
Paramètres (fréquence d'échantillonnage)		09-sept-13			10-sept-13			Émission		
	Date	Conc (mg/Nm³) Débit (Nm³/h)	Émission (kg/h)	Сопс (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)
SO ₂ (1x/an)		3193,34 195 061	622,8960937	2366,71	207 495	491,0804915	4203,7	209 741	881,6882417	665,221609

En utilisant de la méthode de calcul précisée à l'annexe 4-B de la Partie VII de l'attestation, calculer l'efficacité de l'usine d'acide. Joindre les calculs.

Quantité de SO ₂ émis (t)	1,77
Quantité de SO ₂ dans l'acide (t)	153,75
Efficacité de l'usine (%)	98,86%

N	orme d'ef	ficacité:	96	%

Suivi des émissions à la cheminée C4 :

Année : 2013												
Paramètres			Essai # 1			Essai # 2			Essai # 3	197	Émission	
(fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	moyenne (kg/h)	
nioxines et furanes (1x/an)	Note 1	0,0000000029	200 599	0,0000000006	0,0000000018	209 672	0,0000000004	0,0000000009	233 357	0,0000000002	0,0000000004	
(1x/an)	Note 2	0	212 511	0	0	208 374	0	0	210 430	0	0	
ان، دا (1x/an)	Note 3	0,13089	212 511	0,027815565	1,09948	208 374	0,229103046	0,36745	210 430	0,077322504	0,111413705	
Hg (1x/an)	Note 4	0,0071724	204 075	0,001463708	0,0101055	198 307	0,002003991	0,006204	190 868	0,001184145	0,001550615	

- Note 1 : Le premier essai a été effectué le 03 septembre, le deuxième essai le 04 septembre et le troisième essai le 05 septembre.
- Note 2 : Le premier essai a été effectué le 06 mai, le deuxième et le troisième essai ont été effectués le 07 mai.
- Note 3 : Le premier essai a été effectué le 06 mai, le deuxième et le troisième essai ont été effectués le 07 mai.
- Note 4 : Le premier ainsi que le deuxième essai ont été effectués le 18 septembre et le troisième essai le 20 septembre.

	Calcul du taux	de production	
	Essai #1	Essai #2	Essai #3
durée de l'essai (h)	3	2,5	2,5
production d'acide à 100% (t)	278,52	207,55	220,23
TP (t/h)	92,84	83,02	88,092

	Tonnes de SO ₂ émis	Tonnes de SO ₂ dans l'acide
	pendant la	durée des essals
Essai #1	1,87	181,89
Essai #2	1,23 -	135,54
Essai #3	2,20	143,82
тоуелпе	1,77	153,75
Efficacité (%)	98,86%	

Cheminée C-2

Vérification de la norme de particules (RAA art.185) :

1 157 010

		TA		Essai # 1	25.04		Essai # 2		Essai # 3		
aramètres réquence d'échantillonnage)	Date	(t/h) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	
	1er trimestre	136	41,1	1 166 856	0,352030368	18,8	1 200 874	0,165720539	12,8	1 134 515	
Matières particulaires	2e trimestre	142	15,7	1 149 571	0,127017723	12,0	1 125 989	0,095092062	20,7	1 168 284	
Matières particulaires 1x/3 mois)	3e trimestre	132	31,3	1 157 285	0,273889634	23,1	1 140 645	0,199229395	15,4	1 125 803	
	4e trimestre	138	10,9	1 252 402	0,098582374	19,4	1 257 565	0,176181861	19,6	1 465 141	

1. Le taux d'alimentation (TA), exprimé en tonnes à l'heure d'opération, correspond au tonnage moyen trimestriel des matières introduites au procédé. (voir Matières introduites au procédé ci-dessous)

- 2. Pour chaque trimestre, le taux d'émission moyen (kg/t) correspond au calcul de la moyenne arithmétique des essais.
- 3. La moyenne annuelle est la moyenne arithmétique des taux d'émission moyens trimestriels.
- 4. L'alimentation annuelle correspond à la somme des matières introduites au procédé durant l'année.
- 5. Un tableau, au bas de la feuille, présente les dates d'échantillonnage pour les différents paramètres.

latières introduites au procédé :

Alimentation annuelle (t/an) (4)

Cheminée C-2

Suivi de l'échantillonnage :

Paramètres			Essai # 1			Essai # 2			Essai # 3	
(fréquence d'échantillonnage)	Date (5)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/l
	Trimestre 1	5,656	1 166 856	6,600	2,34	1 200 874	2,810	2,562	1 134 515	2,907
As	Trimestre 2	1,671	1 149 571	1,921	1,328	1 125 989	1,495	3,778	1 168 284	4,414
(1x/3mois)	Trimestre 3	3,484	1 157 285	4,032	2,177	1 140 645	2,483	1,162	1 125 803	1,308
	Trimestre 4	1,138	1 252 402	1,425	2,945	1 257 565	3,704	2,095	1 465 141	3,069
	Trimestre 1	0,186	1 166 856	0,217	0,188	1 200 874	0,226	0,197	1 134 515	0,223
Bi	Trimestre 2	0,068	1 149 571	0,078	0,06	1 125 989	0,068	0,127	1 168 284	0,148
(1x/3mois)	Trimestre 3	0,219	1 157 285	0,253	0,184	1 140 645	0,210	0,152	1 125 803	0,171
	Trimestre 4	0,123	1 252 402	0,154	0,182	1 257 565	0,229	0,161	1 465 141	0,236
	Trimestre 1	0,061	1 166 856	0,071	0,039	1 200 874	0,047	0,053	1 134 515	0,060
Sb	Trimestre 2	0,023	1 149 571	0,026	0,017	1 125 989	0,019	0,047	1 168 284	0,055
1x/3mois)	Trimestre 3	0,064	1 157 285	0,074	0,57	1 140 645	0,650	0,018	1 125 803	0,020
	Trimestre 4	0,012	1 252 402	0,015	0,046	1 257 565	0,058	0,024	1 465 141	0,035
	Trimestre 1	3,418	1 166 856	3,988	3,239	1 200 874	3,890	2,779	1 134 515	3,153
Pb	Trimestre 2	1,443	1 149 571	1,659	2,259	1 125 989	2,544	2,061	1 168 284	2,408
1x/3mois)	Trimestre 3	3,524	1 157 285	4,078	2,755	1 140 645	3,142	2,806	1 125 803	3,159
	Trimestre 4	2,187	1 252 402	2,739	2,966	1 257 565	3,730	3,157	1 465 141	4,625
	Trimestre 1	0,034	1 166 856	0,040	0,015	1 200 874	0,018	0,013	1 134 515	0,015
Cd	Trimestre 2	0,008	1 149 571	0,009	0,006	1 125 989	0,007	0,009	1 168 284	0,011
1x/3mois)	Trimestre 3	0,022	1 157 285	0,025	0,019	1 140 645	0,022	0,015	1 125 803	0,017
	Trimestre 4	0,014	1 252 402	0,018	0,013	1 257 565	0,016	0,012	1 465 141	0,018
^p aramètres			Essai # 1			Essai # 2			Essai # 3	
fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h
Dioxines et furanes (1x/an)	(5)	3,508350E-09	1 286 287	0,000000005	1,512453E-09	1 350 353	0,000000002	3,611359E-09	1 310 919	0,000000005
Cl ₂ (1x/an)	(6)	0	1 130 113	0,000000000	0	1 152 050	0,000000000	0	1 149 151	0,000000000
HCI (1x/an)		1,938534	1 130 113	2,190762790	0,230947	1 152 050	0,266062356	0,790698	1 149 151	0,908631023
Hg (1x/an)		0,408000	1 029 939	0,420215112	0,209000	1 014 141	0,211955469	0,817000	1 175 033	0,960001961
49 hat feather the feather than 19 had the feather t		2,194652334	1 125 463	2,470	2,870547362	1 215 796	3,490	6,454591905	1 219 287	7,870

Rapport annuel et tarification

Annexe 2

						_
310 (c -)						
NOx (2x/5 ans)	3,287535885 1 1125 463	Ins Attmos 2,12	22066531 1 215 796	2.580 II	0.16403029 1 219 287	0.200
II INUX IZAZ GIIGI II	11 3.40/333003 1 1.143. 4 03		22000001 1210790	7 DOU 118	0.10403029 1.219.267	()/()()
				<u> </u>	0,10,00000 121720,	0,200

Note:

6) Le chlore n'a pas été détecté.

Calendrier d'échantillonnage:

Année : 2014		10000 0000	a constant	Date			
Paramètres (fréquence d'échantillonnage)	Essai # 1	Essai # 2	Essai # 3	Essai # 4	· Essai # 5	Essai # 6	Essai # 7
A. Di Ch Dh Col et Metière	2014-03-14	2014-03-24	2014-03-25	2014-03-25	2014-03-26	2014-03-26	
As, Bi, Sb, Pb, Cd et Matières	2014-04-23	2014-04-24	2014-04-24	2014-05-13	2014-05-14 (7)	2014-05-14	
particulaires	2014-08-06	2014-08-06	2014-08-08	2014-08-20	2014-08-20	2014-08-22	APPENDING
	2014-12-16	2014-12-16	2014-12-17	2014-12-18	2014-12-19	2014-12-19	
Dioxines et furanes (1x/an)	2014-11-26	2014-11-27	2014-11-28		100 Table 1		
Cl ₂ (1x/an)	2014-08-28	2014-08-28	2014-08-28				
HCI (1x/an)	2014-08-28	2014-08-28	2014-08-28				
Hg (1x/an)	2014-08-26	2014-08-26	2014-08-27	2014-10-23	2014-11-19	2014-11-19	2014-12-29
CO (2x/5 ans)	2013-03-06	2013-03-06	2013-03-06				
NOx (2x/5 ans)	2013-03-06	2013-03-06	2013-03-06				

⁷⁾ L'analyse du filtre pour les éléments métalliques n'a pas pu être réalisé, donc aucun résultat.

Cheminée C-4

Vérification de la norme réglementaire en brouillard d'acide (H₂SO₄ et SO₃) à la cheminée C4 :

Année: 2014				Essal # 1				al#2			Essa	il # 3			E	issal # 4			E	sal # 5			
	2014-07-29			2014-07-31				Superior Company	2014	08-01		2014-10-07			2014-10-08				Taux	Taux			
	Taux d'émission (kg/l) (3)	TP (un) (1)	Conc (mg/kim²)	Débit (kerîn)	Taux d'émission (kan) (5)	TP (sh)	Cono (mg/km²)	Débit (teal h)	Taux d'émission (kpt) (3)	TP (th)	Conc (mg/km²)	Débit (Nar ¹ ā)	Taux d'émission (kg*) (3)	TP ((市) (1)	Cone (ng tim²)	Débit (territ)	Taux d'émission	d'émission d'émis moy (kgr) (2) max (s					
H _i SO ₄ + SO ₃ (1x/an)		99,43	27,25	216 294	0,05928	84,80	16,26	210 545	0,04037	95,59	23,66	210 207	0,05203	102,87	14,62	219 369	0,03118	92,39	14,14	221 722	0,03393	0,043	0,059
				-0.00			and the second						Norme (kg/l)			Accordance to	Norme (kg/t)			0.000	Norme (kg/t)	0,075	0,09

- Le taux de production (TP) est le taux de production d'acide à 100% correspondant à la durée de chaque essal.

 Indindré les dominée qui ont permits de calculer le taux de production d'acide à 100%.

 La moyenne des trois essais (TC) ne dat pas dépasser la norme de 0.078 kg/t.

 Le taux d'émission maximal est le taux d'émission maximal obtanu dans les 3 essais.

 Aucune valeur ne doit excéder 200% de la nome soit 0.09 kg/t.

Vérification de la norme réglementaire sur l'efficacité de l'usine d'acide ;

Année: 2014			Essal # 1	\$5.426±5.56±5.		Essal #2	1000		Essai#3		1	Essal # 4			Essai#5		
Paramètres			2014-07-29			2014-07-31			2014-08-01	teringana.		2014-10-07		Swiffichis	2014-10-08		Émission
(fréquence d'échantilionnage)	Date	Conc (mg/tim)	Débit	Émission (kg/h)	Cone (my Nor)	Débit	Émission (kgh)	Conc (mg/kim²)	Débit (North)	Émission (kg/h)	Conc (mg/tim)	Débit (Nm)(h)	Émission (kg/h)	Conc (mo-Nm)	Débit naman	Émission (koh)	moyenne (kg/h)
SO ₂ (1x/an)		5239.99	216 204	1133 378397	A526 22	and the state of t	**************************************	590000000000000000000000000000000000000	(ALC: 0.000 CORP. 0.00)		200 AD 100 AD 2000			1500 St. 150			
SO ₂ (1x/an)		5239,99	216 294	1133,378397	4526,22	210 545	952,9729899	4847,09	210 207	1018,892248	5484,7	219 369	1203,173154	4895,62	221 722	1085,466658	1078,7766

En utilisant de la méthode de calcul précisée à l'annexe 4-B de la Partie VII de l'attestation, calculer l'efficacité de l'usine d'acide. Joindre les calculs.

Quantilé de SO ₂ émis (i)	
Quantité de SO ₂ dans l'acide (I)	128,73
Efficacité de l'usine (%)	98,30%

Norme d'efficacité; 96%

Sulvi des émissions à la cheminée C4 :

Paramètres			Essal#1			Essal #2			Essai # 3		2562532	Essal # 4			Essal #5			Essal # 6		
(Iréquence d'échanisionnage) Date	Conc (mg/lén')	Débit	Émission (kgh)	Cone (mg/km²)	Débit (New ³ 20)	Émission (kg/h)	Conc (mg/Nm²)	Débit (Ners'h)	Émission (kg/h)	Conc (mg/km²)	Débit (ten'h)	Émission (kg/h)	Conc (ag Nas)	Débit (Nar?h)	Émission (kgn)	Cono (mg/km²)	Débit (Nm³/h)	Émission (kg/h)	Émission mayenn (igh)	
Dioxines et furanes (1x/an)	Note 1	5,04641E-09	211 829	0,0000000011	8,62576E-10	223 757	0,00000000002	2,47801E-09	217 934	0.0000000005			100	Ý			200			0,0000000000
Cl ₂ (1x/an)	Note 2	0	215 463	0	0	212 466	0	0	215 431	0	33.400.300.300.000			0.000	000000000000000000000000000000000000000			300000000000000000000000000000000000000		0,000000
HCl (1x/an) Hg (1x/an)	Note 3	0,42	215 463	0,089556748	0,767326733	212 466	0,163030842	0,68	215 431	0,147483325	10.802788944.59	0.000				457445000000000000000000000000000000000				0,133356972
rig (1x/an)	Note 4	0,013	226 486	0,002944318	0,021	211 499	0.004441479	0,019	219 787	0.004175953	0.001	219 174	0.000219174	0.000349544	221 028	0.000077259	0.000255387	231 329	0.00005908	0,001986210

Note 1: Le premier essai a été effectué le 03 octobre, le deuxième essai le 06 octobre et le troisième essai le 14 octobre 2014.
Note 2: Le trois essai ont été réalisés le 23 septembre 2014.
Note 3: Le trois essai ont été réalisés le 23 septembre 2014.
Note 3: Le trois essai ont été réalisés le 23 septembre 2014.
Note 4: Le premier essai a été effectué le 15-04-2014, le deuxième le 03-08-2014, le troisième le 04-08-2014, le quatrième le 17-10-2014, le cinquième le 20-10-2014, le stolème le 22-10-2014.

Voici les données qui ont permis de calculer le taux de production d'acide à 100%.

		Calcul du taux d	production		
	Essal #1	Essal #2	Essal #3	Essal #4	Essai #5
Durée de l'essal (h)	2,00	2,25	2,17	2,00	2,00
Production d'acide à 100% (t)	198,85	190,81	207,12	205,74	184,78
TP (t/h)	99,43	84,80	95,59	102,87	92,39

TOTOL 183 CERCON	7,	
	Tonnes de SO ₂ émis	Tonnes de SO ₂ dans l'acide
	pendant la	durée des essals
Essal #1	2,27	129,86
Essal #2	2,14	124,61
Essal #3	2,21	135,26
Essal #4	2,41	134,36
Essal #5	2,17	120,67
moyenne	2,23	128,73
Efficacité (%)	98,30%	

Cheminée C-2

Vérification de la norme supplémentaire en matières particulaires :

		TA		Essai # 1			Essai # 2			Essai # 3			Essai # 4			Essai # 5			Essai 4	16	Taux
Paramètres fréquence d'échantillonnage)	Date	(t/h) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t)	Conc (mg/Nm ²)	Débit (Nm³/h)		d'émission moyen (kg/l) (2
	Trimestre 1	133	5,56	1 295 098	0,054156441	10,4	1 060 799	0,08264658	7,9	1 214 755	0,0720385	11,5	1 334 055	0,1155242	11,2	1 179 499	0,0993699	13,7	1 088 899	0,111882226	0,089
atières particulaires	Trimestre 2	134	52,3	1 114 753	0,43526731	19,8	1 179 644	0,174305648	36,4	1 189 367	0,3230854	15,1	1 257 537	0,1413093	22,2	1 173 999	0,1942008	26,3	1 219 301	0,23885793	0,251
(1x/3 mois)	Trimestre 3	134	24,2	1 246 560	0,225482544	21,7	1 272 317	0,206014486	22,1	1 320 457	0,2177992	24,2	1 335 346	0,2413811	20,7	1 308 454	0,2022703	19,0	1 237 131	0,175625171	0,211
	Trimestre 4	136	36,9	1 248 722	0,338700506	44,5	1 224 303	0,400772496	50,4	1 212 754	0,4496407	27,7	1 210 823	0,2465963	24,3	1 212 099	0,2163381	37,2	1 196 223	0,327576232	0,330
		n Sales Control									E SAMO SAME							Taux d	émission mo	yen annuel (kg/t) (3)	0,220
															HISTORY WITH				N	lorme annuelle (kg/t)	0,6
Alimentation annuelle (t/an) (4)	1 125 016			acome concern		00010300010100	200 TO 100 100 100 100 100 100 100 100 100 10		200000000000000000000000000000000000000		CHARLES CONTRACTOR		V-0500000000000000000000000000000000000			MANUAL PROPERTY.	NAME OF TAXABLE PARTY.		Émi	ission annuelle (t/an)	248,012

- 1. Le taux d'alimentation (TA), exprimé en tonnes à l'heure d'opération, correspond au tonnage moyen trimestriel des matières introduites au procédé.
- (voir onglet Matières introduites au procédé et notes ci-dessous)

 2. Pour chaque trimestre, le taux d'émission moyen (kg/l) correspond au calcul de la moyenne arithmétique des essais.
- 2. La moyenne annuelle est la concernation (my) ny ly correspond at acact use its mysis in eau. Insert
 3. La moyenne annuelle est la moyenne arithmétique des taux d'émission mysuns trimestriels.
 4. La limentation annuelle correspond à la scomme des maitires introduites au procédé durant l'année.
 5. Un tableau, au bas de la feuille, présente les dates d'échantillonnage pour les différents paramètres.

Matières introduites au procédé:
Foumir les quantités de matières introduites au procédé (réacteur, convertisseurs, fours à anodes et coulée) annuellement et sur une base mensuelle.
Ces matières (concentrés, minerais, produits recyclés, fondants et combustibles) sont calculées selon la méthode présentée à l'annexe 4-A de la partie VII de l'attestation.

Cheminée C-2

Suivi de l'échantillonnage :

			Essai #1		STATE STATE	Essai # 2			Essai #3			Essai # 4		0.000	Essai # 5			Essai # 6	150000000000000000000000000000000000000			
Paramètres (fréquence d'échantillonnage)	Date (5)	Conc (mg/Nm²)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm²/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Émission moyenne (kg/h)		
	Trimestre 1	0,674	1 295 098	0,873	0,802	1 060 799	0,851	0,925	1 214 755	1,123	0,948	1 334 055	1,265	1,441	1 179 499	1,699	0,971	1 088 899	1,057	1,145		
As	Trimestre 2		1 114 753	1,601	1,058	1 179 644	1,248	3,142	1 189 367	3,737	1,469	1 257 537	1,848	2,426	1 173 999	2,849	1,260	1 219 301	1,537	2,137		
(1x/3mois)	Trimestre 3	8,215	1 246 560	10,241	1,434	1 272 317	1,825	3,108	1 320 457	4,104	5,147	1 335 346	6,873	1,823	1 308 454	2,385	2,374	1 237 131	2,937	4,727	Moyenne totale	
	Trimestre 4	1,592	1 248 722	1,988	2,728	1 224 303	3,340	2,184	1 212 754	2,648	4,163	1 210 823	5,041	3,704	1 212 099	4,490	1,459	1 196 223	1,746	3,209	émission As :	2,804 k
	Trimestre 1	0,072	1 295 098	0,094	0,061	1 060 799	0,065	0,056	1 214 755	0,068	0,123	1 334 055	0,164	0,115	1 179 499	0,135	0,149	1 088 899	0,162	0,115		
Bi	Trimestre 2		1 114 753	0,155	0,076	1 179 644	0,089	0,250	1 189 367	0,297	0,052	1 257 537	0,065	0,102	1 173 999	0,120	0,078	1 219 301	0,095	0,137	1	
(1x/3mols)	Trimestre 3		1 246 560	0,269	0,113	1 272 317	0,144	0,160	1 320 457	0,211	0,212	1 335 346	0,283	0,163	1 308 454	0,214	0,208	1 237 131	0,257	0,230		
	Trimestre 4	0,285	1 248 722	0,356	0,300	1 224 303	0,368	0,281	1 212 754	0,341	0,372	1 210 823	0,450	0,455	1 212 099	0,551	0,209	1 196 223	0,251	0,386	1	
	Trimestre 1	0,016	1 295 098	0,021	0,031	1 060 799	0,033	0,015	1 214 755	0,019	0,025	1 334 055	0,033	0,062	1 179 499	0,073	0,050	1 088 899	0,055	0,039	2.5	
Sb	Trimestre 2	0,040	1 114 753	0,045	0,026	1 179 644	0,030	0,077	1 189 367	0,091	0,027	1 257 537	0,034	0,045	1 173 999	0,053	0,068	1 219 301	0,083	0,056		
(1x/3mois)	Trimestre 3	0,099	1 246 560	0,124	0,040	1 272 317	0,051	0,049	1 320 457	0,064	0,062	1 335 346	0,083	0,055	1 308 454	0,071	0,037	1 237 131	0,046	0,073	-	
	Trimestre 4	0,016	1 248 722	0,020	0,023	1 224 303	0,029	0,003	1 212 754	0,004	0,047	1 210 823	0,057	0,068	1 212 099	0,083	0,011	1 196 223	0,013	0,034		
	Trimestre 1	1,872	1 295 098	2,425	1,569	1 060 799	1,664	1,222	1 214 755	1,485	1,490	1 334 055	1,988	2,212	1 179 499	2,609	2,236	1 088 899	2,435	2,101		
Pb	Trimestre 2	2,398	1 114 753	2,674	1,816	1 179 644	2,142	5,982	1 189 367	7,115	2,897	1 257 537	3,643	2,820	1 173 999	3,311	3,127	1 219 301	3,812	3,783		
(1x/3mois)	Trimestre 3	7,725	1 246 560	9,630	7,845	1 272 317	9,981	7,536	1 320 457	9,951	4,667	1 335 346	6,233	6,564	1 308 454	8,588	5,409	1 237 131	6,691	8,512	Moyenne totale	6,822 k
	Trimestre 4	16,254	1 248 722	20,296	13,352	1 224 303	16,347	10,542	1 212 754	12,784	5,039	1 210 823	6,101	3,984	1 212 099	4,830	14,201	1 196 223	16,988	12,891	émission Pb :	0,022 8
	Trimestre 1	0,008	1 295 098	0,010	0,013	1 060 799	0,014	0,013	1 214 755	0,016	0,009	1 334 055	0,012	0,013	1 179 499	0,016	0,009	1 088 899	0,010	0,013		
Cd	Trimestre 2	0,056	1 114 753	0,063	0,012	1 179 644	0,014	0,020	1 189 367	0,024	0,009	1 257 537	0,012	0,012	1 173 999	0,014	0,011	1 219 301	0,014	0,023		
(1x/3mois)	Trimestre 3	0,046	1 246 560	0,058	0,017	1 272 317	0,022	0,022	1 320 457	0,029	0,025	1 335 346	0,033	0,024	1 308 454	0,031	0,032	1 237 131	0,039	0,036	Moyenne totale émission Cd :	0,038 k
	Trimestre 4	0,049	1 248 722	0,062	0,081	1 224 303	0,099	0,143	1 212 754	0,174	0,031	1 210 823	0,037	0,069	1 212 099	0,084	0,024	1 196 223	0,028	0,081	emission Ca :	0,036 N
Paramètres			Essai #1			Essai # 2			Essai # 3			Essai # 4			Essai # 5			Essai # 6			I	
(fréquence d'échantillonnage)	Date	Conc (mg/Nm²)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm²)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm ³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm ³)	Débit (Nm³/h)	(kg/h)	Émission moyenne (kg/h)		
Dioxines et furanes (1x/an)	(5)	1,25286E-09	1 128 216	0,000000001	#######	1 207 625	0,000000001	3,069820E-09	1 172 141	0,000000004										0,000000002		
Cl ₂ (1x/an)	(6)	0	1 097 886	***********	0	1 222 032	0,000000000	0	1 194 318	0,000000000					SAME SAME	Part Control	SECTION AND ADDRESS.			0,000000000		
HCI (1x/an)		1.516449	1 097 886	1.664887932	0.881362	1 222 032	1.077052393	0.896092	1 194 318	1.070218537										1,270719621	_	
Hg (1x/an)		0.000157	HISTORY IN THE PARTY.	0.000183679	0.000185	1 124 528	0.000207536	0,000199	1 204 755	0,000239612						100000000000000000000000000000000000000			555555	0,000210276	-	
CO (2x/5 ans)		29.64790409	1 246 560	36.958	13.7527569	1 246 560	17.144	7.671412193	1 246 560	9.563	1.8786205	1 224 303	2,300	7,2694447	1 224 303	8.900	2.123658	1 224 303	2,600	12,910734206	-	
NOx (2x/5 ans)		2.962199588	1 246 560	3.693	4.41662511	1 246 560	5.506	4.081461082	1 246 560	5,088	11,311128	1 224 303	13.848	7.3000897	1 224 303	8,938	2,0857399		2,554	6,604212166	-	

Le chlore n'a pas été détecté.

Note: 6) Calendrier d'échantillonnage :

Année : 2015			Da	te		THE COLUMN	
Paramètres (fréquence d'échantillonnage)	Essai # 1	Essai # 2	Essai # 3	Essai # 4	Essaí # 5	Essai # 6	
4 D: 01 DI GI :	04-03-2015	25-03-2015	25-03-2015	26-03-2015	27-03-2015	30-03-2015	Trimestre 1
As, Bi, Sb, Pb, Cd et Matières particulaires	2015-06-04	2015-06-05	2015-06-10	2015-06-15	2015-06-15	2015-06-16	Trimestre 2
watteres particulaires	2015-08-04	2015-08-05	2015-08-05	2015-08-06	2015-08-17	2015-08-18	Trimestre 3
	2015-12-02	2015-12-03	2015-12-04	2015-12-07	2015-12-09	2015-12-14	Trimestre 4
Dioxines et furanes (1x/an)	30-06-2015	01-07-2015	02-07-2015				
Cl ₂ (1x/an)	19-06-2015	19-06-2015	19-06-2015		V 4 7 8 7		
HCI (1x/an)	19-06-2015	19-06-2015	19-06-2015				
Hg (1x/an)	08-07-2015	10-07-2015	16-12-2015				
CO (2x/5 ans)	2015-08-06	2015-08-06	2015-08-06	03-12-2015	03-12-2015	03-12-2015	
NOx (2x/5 ans)	2015-08-06	2015-08-06	2015-08-06	03-12-2015	03-12-2015	03-12-2015	

Cheminée C-4

Vérification de la norme réglementaire en brouillard d'acide (H2SO4 et SO3) à la cheminée C4 :

Année :	2015				Essai # 1			Ess	ai # 2			Essai #	3			the sales are a
Paramètres			品 医外 医 使 经		2015-10-06			2015	-10-08			2015-10-0	09		Taux	Taux
réquence échantillonnage)	Date	TP (t/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t) (3)	TP (t/h) (1)	Conc (mg/Nm³)	Débit (Nm³/h)	Taux d'émission (kg/t) (3)	TP (t/h) (1)	Conc (mg/Nm²)	Débit (Nm³/h)	Taux d'émission (kg/t) (3)		d'émission	
H ₂ SO ₄ + SO ₃ (1x/an)			100,08	25,74	217 424	0,05592	101,42	18,7	223 604	0,04123	82,50	11,52	225 308	0,03146	0,043	0,056
														Norme (kg/t)	0,075	0,09

- 1. Le taux de production (TP) est le taux de production d'acide à 100% correspondant à la durée de chaque essai.
- Joindre les données qui ont permis de calculer le taux de production d'acide à 100%.
- 2. La moyenne des trois essais (TE) ne doit pas dépasser la norme de 0.075 kg/t.

 3. Le taux d'émission maximal est le taux d'émission maximal obtenu dans les 3 essais.

 Aucune valeur ne doit excéder 120% de la norme soit 0,09 kg/t

Vérification de la norme réglementaire sur l'efficacité de l'usine d'acide :

Année : 2015			Essai # 1			Essai # 2			Essai # 3		
Paramètres			2015-10-06			2015-10-08			2015-10-09		
(fréquence d'échantillonnage)	Date	Conc (mg/Nm ³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Émission moyenne (kg/h)
SO ₂ (1x/an)		9205,87	217 424	2001,577456	6624,75	223 604	1481,322253	5623,55	225 308	1267,030712	1583,310141

En utilisant de la méthode de calcul précisée à l'annexe 4-B de la Partie VII de l'attestation, calculer l'efficacité de l'usine d'acide. Joindre les calculs.

Quantité de SO ₂ émis (t)	3,73
Quantité de SO ₂ dans l'acide (t)	145,75
Efficacité de l'usine (%)	97,50%

Norme d'efficacité: 96%

Suivi des émissions à la cheminée C4 :

Année : 2015			a contraction								
Paramètres			Essai # 1			Essai # 2		120000000000000000000000000000000000000	Essai # 3		
(fréquence d'échantillonnage)	Date	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm²)	Débit (Nm³/h)	Émission (kg/h)	Conc (mg/Nm³)	Débit (Nm³/h)	Émission (kg/h)	Émission moyenne (kg/h)
Dioxines et furanes (1x/an)	Note 1	3,3831E-10	251 359	0,0000000001	1,06016E-09	240 753	0,0000000003	2,70132E-10	243 315	0,0000000001	0,000000001
Cl ₂ (1x/an)	Note 2	4,441	229 080	1,017254704	0	217 673	0	0	231 318	0	. 0,339084901
HCI (1x/an)	Note 3	0,63	229 080	0,144527991	5,30	217 673	1,153021399	2,17	231 318	0,502140667	0,599896686
Hg (1x/an)	Note 4	0,00299686	219 531	0,000657902	0,004691821	215 367	0,001010464	0,006124304	225 425	0,001380572	0,001016313

- Note 1 : Le premier essai a été effectué le 20-04-2015, le deuxième essai le 21-04-2015 et le troisième essai le 23-04-2015.
- Note 2 : Le trois essai ont été réalisés le 16 octobre 2015. Le chlore n'a pas été détecté pour les deux derniers essais.
- Note 3 : Le trois essai ont été réalisés le 16 octobre 2015.

 Note 4 : Le premier essai a été effectué le 01-10-2015, le deuxième le 02-10-2015, le troisième le 03-10-2015.

Voici les données qui ont permis de calculer le taux de production d'acide à 100%.

Calcul du taux de production				
	Essai #1	Essai #2	Essai #3	
Durée de l'essai (h)	2,33	2,33	2,42	
Production d'acide à 100% (t)	233,5	236,6	199,4	
TP (t/h)	100,08	101,42	82,50	

Voici les calculs	Tonnes de SO ₂ émis	Tonnes de SO ₂ dans l'acide
v = X+ =	pendant la durée des essals	
Essai #1	4,67	152,50
Essai #2	3,46	154,54
Essai #3	3,06	130,20
moyenne	3,73	145,75
Efficacité (%)	97,50%	

Cheminées C-4 et C-2

Vérification de la norme règlementaire de mercure

	Taux d'émission (kg/h)	Temps de fonctionnement (h)	Charge annuelle (g/an)
Cheminée C2	0,000210276	8368,1	1 759,61
Cheminée C4	0,001016313	7748,2	7 874,60

	T/an	
Anodes produites	213426	

	g/T d'anodes produites
Mercure émis	0,045140714
Norme	2